Количественный анализ химия. Химические (классические) методы количественного анализа

22.09.2019 Утепление

Аналитическая химия занимается исследованием экспериментальных методов определения состава веществ. Определение состава веществ включает выявление природы компонентов, из которых состоит исследуемое вещество, и установление количественных соотношений этих компонентов.

Сначала устанавливают качественный состав исследуемого объекта, т.е. решают вопрос, из чего он состоит, а затем приступают к определению количественного состава, т.е. узнают, в каких количественных соотношениях обнаруженные составные части находятся в объекте исследования.

Качественный анализ вещества можно проводить химическими, физическими, физико-химическими методами.

Химические методы анализаоснованы на применении характерных химических реакций для установления состава анализируемого вещества.

Химический анализ вещества проводят двумя способами: «сухим путем» или «мокрым путем». Анализ сухим путем - это химические реакции, происходящие с веществами при накаливании, сплавлении и окрашивании пламени.

Анализ мокрым способом - это химические реакции, протекающие в растворах электролитов. Анализируемое вещество предварительно растворяют в воде или других растворителях. В зависимости от массы или объема взятого для анализа вещества, от применяемой техники различают макро-, полумикро- и микрометоды.

Макрометод. Для проведения анализа берут 1-2 мл раствора, содержащего не менее 0,1 г вещества, и добавляют не менее 1 мл раствора реактива. Реакции проводят в пробирке, осадок отделяют фильтрованием. Осадок на фильтре промывают от примесей.

Полумикрометод . Для анализа берут в 10-20 раз меньше вещества (до 0,01 г). Так как в этом методе работают с малыми количествами вещества, то пользуются микропробирками, часовыми или предметными стеклами. Для отделения осадка от раствора применяют центрифугирование.

Микрометод. При выполнении анализа данным методом берут одну-две капли раствора, а сухого вещества - в пределах 0,001г. Характерные реакции проводят на часовом стекле или фарфоровой пластинке.

При проведении анализа пользуются следующими операциями: нагревание и выпаривание, осаждение, центрифугирование, проверка полноты осаждения, отделение раствора (центрифуга) от осадка, промывание и растворение осадка.

Нагревание растворов можно вести непосредственно пламенем газовой горелки, на асбестовой сетке или водяной бане. Небольшое количество раствора нагревают до температуры, не превышающей 100°С, на водяной бане, вода в которой должна кипеть равномерно.

Для концентрирования растворов применяют водяную баню. Выпаривание раствора до сухого остатка проводят в фарфоровых чашках или тиглях, нагревая их на асбестовой сетке. Если сухой остаток после выпаривания необходимо прокалить для удаления летучих солей, то тигель ставят на фарфоровый треугольник и нагревают пламенем газовой горелки.


Осаждение. Реакцию осаждения проводят в конических колбах или цилиндрической пробирках. В исследуемый раствор приливают пипеткой реактив-осадитель. Осадитель берут в избытке. Смесь тщательно перемешивают стеклянной палочкой и потирают о внутренние стенки пробирки, это ускоряет процесс образования осадка. Осаждение часто ведут из горячих растворов.

Центрифугирование. Осадок отделяют от раствора центрифугированием, используя ручную или электрическую центрифугу. Пробирку с раствором и осадком помещают в гильзу. Центрифуга должна быть загружена равномерно. При быстром вращении центробежная сила отбрасывает частицы осадка на дно и уплотняет его, а раствор (центрифугат) становится прозрачным. Время вращения составляет от 30 с до нескольких минут.

Проверка полноты осаждения. Пробирку осторожно вынимают из центрифуги и добавляют по стенке 1-2 капли реактива-осадителя к прозрачному раствору. Если раствор не мутнеет, значит осаждение полное. Если же наблюдается помутнение раствора, то в пробирку еще добавляют осадитель, содержимое перемешивают, нагревают и вновь центрифугируют, затем повторяют проверку полноты осаждения.

Отделение раствора (центрифугата) от осадка. Убедившись в полноте осаждения, отделяют раствор от осадка. Раствор от осадка отделяют капельной пипеткой. Пипетку закрывают указательным пальцем и осторожно вынимают из пробирки. Если отобранный раствор необходим для анализа, то его переносят в чистую пробирку. Для полного отделения операцию повторяют несколько раз. При центрифугировании осадок может плотно осесть на дно пробирки, тогда раствор отделяют декантацией (осторожно сливают).

Промывание осадка . Осадок (если он исследуется) необходимо хорошо отмыть; для этого приливают промывную жидкость, чаще всего дистиллированную воду. Содержимое тщательно перемешивают стеклянной палочкой и центрифугируют, затем промывную жидкость отделяют. Иногда в работе эту операцию повторяют 2-3 раза.

Растворение осадка. Для растворения осадка в пробирку добавляют растворитель, помешивая стеклянной палочкой. Нередко растворение осадка ведут при нагревании на водяной бане.

Для определения количественного состава вещества или продукта используются реакции нейтрализации, осаждения, окисления - восстановления, комплексообразования. Количество вещества можно определить по его массе или объему раствора, затраченного на взаимодействие с ним, а также по показателю преломления раствора, его электрической проводимости или интенсивности окраски и т.п.

По количеству взятого для исследования вещества аналитические методы количественного анализа классифицируются следующим образом: макроанализ - 1-10 г твердого вещества, 10-100 мл анализируемого раствора; полумикроанализ - 0,05-0,5 твердого вещества, 1-10 мл анализируемого раствора; микроанализ - 0,001-1-10- 4 г твердого вещества, 0,1-1 * 10- 4 мл анализируемогораствора. В товароведной практике часто пользуются гравиметрическим (весовым) и титриметрическим (объемным) методами.

Гравиметрический (весовой) анализ - один из методов количественного анализа, который позволяет определять состав анализируемого вещества путем измерения массы. Измерение массы (взвешивание) выполняется на аналитических весах с точностью 0,0002 г. Этот метод часто используется в пищевых лабораториях для определения влажности, зольности, содержания отдельных элементов или соединений. Анализ может быть выполнен одним из следующих способов.

1. Определяемую составную часть количественно (полностью, насколько это возможно) выделяют из исследуемого вещества и взвешивают. Так определяют зольность продуктов. Взвешенный на аналитических весах исходный продукт (навеску) сжигают, полученную золу доводят до постоянной массы (прокаливают до тех пор, пока не перестанет изменяться масса) и взвешивают.

Зольность продукта х (%) рассчитывают по формуле

где В - масса прокаленной золы, г;

А - исходная навеска продукта, г.

2. Из навески исходного вещества полностью удаляют определяемую составную часть и остаток взвешивают. Так определяют влажность продуктов, при этом навеску исходного вещества высушивают в сушильном шкафу до постоянной массы.

Влажность продукта х (%) рассчитывают по формуле

где А - исходная навеска продукта, г;

В - масса навески после высушивания, г.

Объемный анализ - метод количественного анализа, где искомое вещество определяют по объему реактива с точно известной концентрацией, затраченному на реакцию с этим веществом.

При определении объемным методом к известному объему раствора определяемого вещества малыми порциями (по каплям) добавляют реактив с точно известной концентрацией до тех пор, пока его количество не будет эквивалентно количеству определяемого вещества. Раствор реактива с точно известной концентрацией называется титрованным, рабочим или стандартным раствором.

Процесс медленного прибавления титрованного раствора к раствору определяемого вещества называется титрованием. Момент, когда количество титрованного раствора будет эквивалентно количеству определяемого вещества, называется точкой эквивалентности или теоретической точкой конца титрования. Для определения точки эквивалентности пользуются индикаторами, которые вблизи ее претерпевают видимые изменения, выражающиеся в изменении цвета раствора, появлении помутнения или выпадении осадка.

Важнейшие условия для правильного проведения объемно-аналитических определений: 1) возможность точного измерения объемов растворов; 2) наличие стандартных растворов с точно известной концентрацией; 3) возможность точного определения момента окончания реакции (правильный выбор индикатора).

В зависимости от того, на какой реакции основано определение, различают следующие разновидности объемного метода:

· метод нейтрализации

· метод окисления - восстановления

· метод осаждения и комплексообразования.

В основе метода нейтрализации лежит реакция взаимодействия ионов Н + и ОН - . Метод применяется для определения кислот, оснований и солей (которые реагируют с кислотами или основаниями) в растворе. Для определения кислот используют титрованные растворы щелочей КОН или NаОН, для определения оснований - растворы кислот НС1, Н 2 SO 4 .

Для определения содержания, например, кислоты в растворе точно отмеренный пипеткой объем раствора кислоты в присутствии индикатора титруют раствором щелочи точно известной концентрации. Точку эквивалентности определяют по изменению цвета индикатора. По объему щелочи, израсходованной на титрование, вычисляют содержание кислоты в растворе.

Метод окисления - восстановления основан на окислительно-восстановительных реакциях, происходящих между стандартным раствором и определяемым веществом. Если стандартный раствор содержит окислитель (восстановитель), то определяемое вещество должно содержать соответственно восстановитель (окислитель). Метод окисления-восстановления подразделяется, в зависимости от используемого стандартного раствора на метод перманганатометрии, метод иодометрии и др.

В основе метода осаждения лежат реакции, сопровождающиеся выпадением осадка. В отличие от гравиметрического метода обработку осадка здесь не производят, массу исследуемого вещества определяют по объему реактива, израсходованному на реакцию осаждения.

Методы аналитической химии могут быть классифицированы на основе различных принципов. В зависимости от измеряемого свойства вещества различают следующие методы: химические; физико-химические; физические (табл. 14). Основой химических методов являются аналитические химические реакции. В основе физико-химических методов лежит измерение каких-либо физических параметров химической системы, зависящих от природы компонентов системы и изменяющихся в процессе химической реакции. К таким параметрам относятся, например, величины потенциалов в потенциометрии, оптических плотностей в спектрофотометрии и т.д. Физические методы не связаны с применением химических реакций. Состав вещества устанавливается изменением каких-либо физических свойств объекта (плотности, вязкости, интенсивности излучения и т.д.). Четких границ между химическими и физико-химическими и физико-химическими и физическими методами нет. Физические и физико-химические методы часто называют инструментальными. В последнее время используют так называемые «гибридные» методы, сочетающие два и более метода. Например, хромато-масс-спектрометрия.

Методы количественного анализа

Методы анализа

Химические

Физико-химические

Физические

гравиметрия

титриметрия

электрохимические

спектроскопические (оптические)

люминесцентные

кинетические

термометрические

хроматографические

спектроскопические (не оптические)

ядерно-физические

радиохимические

Аналитический сигнал

(величина, функционально связанная с содержанием определяемого компонента)

изменение окраски индикатора, выделение газа, осадка и др.

  • - возникает с участием внешних (валентных) электронов и функционально связан с природой и концентрацией вещества;
  • - возникает при взаимодействии вещества с различными видами энергии (электрическая, тепловая, энергия электромагнитного излучения);
  • - получают при взаимодействии с веществом, находящимся в растворе
  • - возникает с участием внутренних электронов или ядер атомов;
  • - агрегатное состояние и химическая форма вещества не имеют значения

Анализ вещества заключается в получении опытным путем данных о его химическом составе. Независимо от используемых методов к анализу предъявляют следующие требования:

  • 1. Точность анализа - это собирательная характеристика метода, включающая их правильность и воспроизводимость.
  • 2. Правильность результатов анализа - получение результатов, близких к действительным.
  • 3. Воспроизводимость - получение одинаковых или близких результатов при повторных определениях.
  • 4. Экспрессность - быстрота проведения анализа.
  • 5. Чувствительность - минимальное количество вещества, которое можно определить данным методом.
  • 6. Универсальность - возможность определять многие компоненты. Особенно важно определять их одновременно в одной пробе.
  • 7. Автоматизация анализа. При проведении массовых однородных анализов следует выбирать метод, допускающий автоматизацию, которая снижает трудоемкость, погрешности, увеличивает скорость, снижает стоимость анализа.
  • 21. Характеристика метод анализа

Количественный анализ, совокупность химических, физико-химических и физических методов определения количественного соотношения компонентов, входящих в состав анализируемого вещества. Наряду с качественным анализом К. а. является одним из основных разделов аналитической химии. По количеству вещества, взятого для анализа, различают макро-, полумикро-, микро- и ульт-рамикрометоды К. а. В макрометодах масса пробы составляет обычно >100 мг, объём раствора > 10 мл; в ультрамикрометодах - соответственно 1-10-1 мг и 10-3-10-6 мл (см. также Микрохимический анализ, Ультрамикрохимический анализ). В зависимости от объекта исследования различают неорганический и органический К. а., разделяемый, в свою очередь, на элементный, функциональный н молекулярный анализ. Элементный анализ позволяет установить содержание элементов (ионов), функциональный анализ - содержание функциональных (реакционноспособных) атомов и групп в анализируемом объекте. Молекулярный К. а. предусматривает анализ индивидуальных химических соединений, характеризующихся определенной молекулярной массой. Важное значение имеет так называемый фазовый анализ - совокупность методов разделения и анализа отдельных структурных (фазовых) составляющих гетерогенных систем. Помимо специфичности и чувствительности (см.Качественный анализ), важная характеристика методов К. а. - точность, то есть значение относительной ошибки определения; точность и чувствительность в К. а. выражают в процентах.

К классическим химическим методам К. а. относятся: гравиметрический анализ, основанный на точном измерении массы определяемого вещества, и объёмный анализ. Последний включает титриметрический объёмный анализ - методы измерения объёма раствора реагента, израсходованного на реакцию с анализируемым веществом, и газовый объёмный анализ - методы измерения объёма анализируемых газообразных продуктов (см. Титриметрический анализ, Газовый анализ).

Наряду с классическими химическими методами широко распространены физические и физико-химические (инструментальные) методы К. а., основанные на измерении оптических, электрических, адсорбционных, каталитических и других характеристик анализируемых веществ, зависящих от их количества (концентрации). Обычно эти методы делят на следующие группы: электрохимические (кондуктометрия, полярография, потенциометрия и др.); спектральные или оптические (эмиссионный и абсорбционный спектральный анализ, фотометрия, колориметрия, нефелометрия, люминесцентный анализ и др.); рентгеновские (абсорбционный и эмиссионный рентгеноспектральный анализ, рентгенофазовый анализ и др.); хроматографический (жидкостная, газовая, газо-жидкостная хроматография и др.); радиометрические (активационный анализ и др.); масс-спектрометрические. Перечисленные методы, уступая химическим в точности, существенно превосходят их по чувствительности, избирательности, скорости выполнения. Точность химических методов К. а. находится обычно в пределах 0,005-0,1%; ошибки определения инструментальными методами составляют 5-10%, а иногда и значительно больше. Чувствительность некоторых методов К. а. приведена ниже (%):

Объёмный.......................................................10-1

Гравиметрический......................................... 10-2

Эмиссионный спектральный.........................10-4

Абсорбционный рентгеноспектральный...... 10-4

Масс-спектрометрический.............................10-4

Кулонометрический....................................... 10-5

Цели количественного анализа

Количественный анализ позволяет установить элементный и молекулярный состав исследуемого объекта или содержание отдельных его компонентов.

В зависимости от объекта исследования различают неорганический и органический анализ. В свою очередь их разделяют на элементный анализ, задача которого - установить, в каком количестве содержатся элементы (ионы) в анализируемом объекте, на молекулярный и функциональный анализы, дающие ответ о количественном содержании радикалов, соединений, а также функциональных групп атомов в анализируемом объекте.

Методы количественного анализа

Классическими методами количественного анализа являются гравиметрический (весовой) анализ и титриметрический (объемный) анализ .

Полную классификацию методов количественного анализа см. в статье Аналитическая химия .

Инструментальные методы анализа

Классификацию инструментальных методов анализа см. в статье Инструментальные методы анализа

Полярография

ПОЛЯРОГРАФИЯ, разновидность вольтамперометрии с использованием индикаторного микроэлектрода из жидкого металла поверхность которого периодически или непрерывно обновляется. При этом не происходит длительного накопления продуктов электролиза на поверхности раздела электрод-раствор в электролитической ячейке. Индикаторным электродом в полярография служит чаще всего ртутный капающий электрод. Используют также капающие электроды из жидких амальгам и расплавов, струйчатые электроды из жидких металлов, многокапельные электроды, в которых жидкий металл или расплав продавливают через диски из пористого стекла, и др.

В соответствии с рекомендациями ИЮПАК различают несколько вариантов полярография: постояннотоковая полярография (исследует зависимость тока I от потенциала Е индикаторного микроэлектрода), осциллополярография (зависимость dE/dt от t при заданном I(t), где t -время), полярография с разверткой I (зависимость Е от I), разностная полярография (зависимость разности токов в двух ячейках от Е), полярография с однократной или многократной разверткой Е за время жизни каждой капли, циклическая полярография с треугольной разверткой Е, полярография со ступенчатой разверткой Е, разл. виды переменнотоковой и импульсной полярография и др.

Фотометрия и спектрофотометрия

Метод основан на использовании основного закона светопоглощения. A=ELC. Где A-поглощение света, E-молярный коэффициент светопоглощения, L-длина поглощающего слоя в сантиметрах, C-концентрация раствора. Существуют несколько методов фотометрии:

  1. Атомно-абсорбционная спектроскопия
  2. Атомно-эмиссионная спектроскопия.
  3. Молекулярная спектроскопия.

Атомно-абсорбционная спектроскопия

Чтобы провести анализ с помощью этого метода, необходим спектрометр. Суть анализа состоит в том, чтобы просветить монохромным светом атомизированную пробу, затем разложить свет, прошедший через пробу любым световым диспергатором и детектором зафиксировать поглощение. Для атомизации пробы применяются атомизаторы. (пламя, высоковольтная искра, индуктивно-связанная плазма). У каждого из атомизатров есть свои плюсы и минусы. Для разложения света используют диспергаторы (дифракционная решетка, призма, светофильтр).

Атомно-эмиссионная спектроскопия

Этот метод немного отличается от атомно-абсорбционного метода. Если в нем источником света был отдельный источник, то в атомно-эмиссионном методе источником излучения служит сама проба. В остальном все похоже.

Рентгенофлуоресцентный анализ

Активационный анализ

См. также

Литература


Wikimedia Foundation . 2010 .

Смотреть что такое "Количественный анализ (химия)" в других словарях:

    Совокупность химических, физико химических и физических методов определения количественного соотношения компонентов, входящих в состав анализируемого вещества. Наряду с качественным анализом К. а. является одним из основных разделов… …

    Качественный анализ совокупность химических, физико химических и физических методов, применяемых для обнаружения элементов, радикалов и соединений, входящих в состав анализируемого вещества или смеси веществ. В качественном анализе используют… … Википедия

    Химия почв это раздел почвоведения, изучающий химические основы почвообразования и плодородия почв. Основой для решения этих вопросов служит исследование состава, свойств почв и протекающих в почвах процессов на ионно молекулярном и… … Википедия

    - (С1 химия) раздел химии, изучающей различные классы веществ, в состав молекулы которых входит только один атом углерода. Как отдельная отрасль знаний С1 химия появляется с развитием перспективных технологий получения углеродсодержащего сырья,… … Википедия

    ХИМИЯ - ХИМИЯ, наука о веществах, их превращениях, взаимодействии и о происходящих при этом явлениях. Выяснением основных понятий, к рыми оперирует X., как напр, атом, молекула, элемент, простое тело, реакция и др., учением о молекулярных, атомных и… … Большая медицинская энциклопедия

    Решает аналитическими методами задачу определения элементного состава металлов и их сплавов. Главная цель проверка сорта сплава или типа и композиционный анализ различных сплавов (количественный анализ). Методы: волнодисперсионный анализ,… … Википедия

    У этого термина существуют и другие значения, см. Химия (значения). Химия (от араб. کيمياء‎‎, произошедшего, предположительно, от египетского слова km.t (чёрный), откуда возникло также название Египта, чернозёма и свинца «черная… … Википедия

    Не следует путать с Экологическая химия. Химия окружающей среды раздел химии, изучающий химические превращения, происходящие в окружающей природной среде. Основные сведения Химия окружающей среды включает в себя более узкие разделы химии,… … Википедия

    Эту статью следует викифицировать. Пожалуйста, оформите её согласно правилам оформления статей … Википедия

    См. Аналитическая химия, Качественный анализ, Количественный анализ … Большая советская энциклопедия

Книги

  • Аналитическая химия. Аналитика 2. Количественный анализ. Физико-химические (инструментальные) методы анализа , Харитонов Юрий Яковлевич. Учебник подготовлен в соответствии с федеральным государственным образовательным стандартом третьего поколения. В книге рассмотрены основы гравиметрического, химических титриметрических…

Качественный анализ неорганических веществ. Предмет и задачи качественного анализа. Основные понятия.

Качественный анализ – обнаружение или открытие составных компонентов в исследуемой системе.

Цель качественного анализа-определение; элементного или изотопного состава вещества. При анализе органических соединений находят непосредственно отдельные химические элементы, например углерод, серу, фосфор, азот или функциональные группы. При анализе неорганических соединений определяют, какие ионы, молекулы, группы атомов, химические элементы составляют анализируемое вещество.

Классификация методов качественного анализа. Аналитический сигнал

В зависимости от количества пробы используемой в анализе различают:

Макроанализ (масса – более 100 мг, объем р-ра – 10-100 мл)

Полу-микроанализ (масса – 10-100 мг, объем р-ра – 1-10 мл)

Микроанализ (масса – 1-10 мг, объем р-ра – 0,01-1 мл)

Субмикроанализ (масса – 0,1-1 мг, объем р-ра – 0,001-0,01 мл)

Ультрамикроанализ (масса – менее 0,1 мг, объем р-ра – менее 0,001 мл)

В случае необходимости обнаружения какого-либо компонента обычно

фиксируют появление аналитического сигнала – появление осадка, окраски, и т.д. Появление аналитического сигнала должно быть надежно

зафиксировано. При определении количества компонента измеряется величина

аналитического сигнала – масса осадка и т.п.

Дробный и систематический анализ. Групповой реагент.

Дробный анализ – обнаружение ионов с помощью специфических реакций в отдельных порциях исследуемого раствора, выполняется в любой последовательности.

Систематический анализ – определённая последовательность выполнения реакций, при которых каждый ион обнаруживается после того, как удаляются все мешающие ионы.

В ходе систематического анализа ионы выделяют из сложной смеси целыми группами, пользуясь одинаковым отношением к некоторым реагентам.

Реагенты, позволяющие выделить из сложной смеси группу ионов, называются групповыми реагентами.

Требования:

* должен осаждать ионы практически полностью

* получающийся осадок должен легко растворяться в щелочах или кислотах для проведения дальнейших исследований.

* его избыток не должен мешать обнаружению оставшихся в растворе ионов.

Классификация катионов на аналитические группы.

Сероводородная (сульфидно-аммиачная)

1 – Na+, K+, Pb+, Cs+, Fr+, NH4+, Mg+, (гр. реагент - нет)

2 – Ca+2, Sr+2, Ba+2, Ra+2, (гр. реагент – (NH 4) 2 CO 3 , pH=8-9)

3.1 – Fe (II и III), Mn+2, Zn+2, Co+2, Ni+2, (гр. реагент - (NH 4) 2 S, pH=8-9) (осаждаются в виде сульфидов)

3.2 – Al+3, Cr+3, Ti+4, Be+2 (гр. реагент - (NH 4) 2 S, pH=8-9) (осаждаются в виде гидроксидов)

4.1 – Cu+2, Hg+2, Bi+3, Cd+2, (гр. реагент – H 2 S) (не растворяются в (NH 4) 2 S)

4.2 – Sn+2, Sn+4, Sb+3, Sb+5, As+3, As+5,(гр. реагент – HCl, pH=0,5)

5 – Ag+, Bb+2, Hg+4 (гр. реагент - HCl)

Классификация анионов на аналитические группы.

1.1 (не раств. в HCl) – SO 4 -2, групповой реагент – BaCl.

1.2 (раств. в HCl) – SO 3 -2, S2O3 -2, CO 3 -2, SiO 3 -2, PO 4 -3 групповой реагент – BaCl.

2 – I-, Cl-, S, Br-, групповой реагент – AgNO 3.

3 – NO 3 -, CH 3 COO- групповой реагент – нет.

Предмет и задачи количественного анализа. Классификация методов количественного химического анализа.

Количественный анализ – определяет количественное содержание компонентов в исследуемой системе.

Методами количественного химического анализа устанавливают, в каких количественных соотношениях находятся составные части в исследуемом веществе. Количественными методами можно определить соединение химического элемента или другой составной части в содержании, сплаве, смеси, растворе. Кроме того, количественные методы позволяют определять атомные, эквивалентные и молекулярные массы, константы равновесия, произведения растворимости, кислотность или щелочность среды.

Гравиметрические (весовые) методы – выделяют и взвешивают осадок.

Титриметрические (объемные) методы – измерение V стандартного раствора, необходимого для реакции.

Газоволюметрические – Измерение V газа, выделяющегося в ходе реакции.

Анализа (химические, физико-химические, физические и биологические).

Требования, предъявляемые к реакциям в количественном анализе. Роль

И значение количественного анализа в фармации

Количественный анализ - совокупность методов аналитической химии для определения количества (содержания) элементов (ионов), радикалов, функциональных групп, соединений или фаз в анализируемом объекте.

Цели количественного анализа

Количественный анализ позволяет установить элементный и молекулярный состав исследуемого объекта или содержание отдельных его компонентов.

В зависимости от объекта исследования различают неорганический и органический анализ. В свою очередь их разделяют на элементный анализ, задача которого - установить, в каком количестве содержатся элементы (ионы) в анализируемом объекте, на молекулярный и функциональный анализы, дающие ответ о количественном содержании радикалов, соединений, а также функциональных групп атомов в анализируемом объекте.

Наряду с качественным анализом Количественный анализ является одним из основных разделов аналитической химии. По количеству вещества, взятого для анализа, различают макро-, полумикро-, микро- и ульт-рамикрометодыКоличественный анализ В макрометодах масса пробы составляет обычно >100 мг, объём раствора > 10 мл; в ультрамикрометодах - соответственно 1-10 -1 мг и 10 -3 -10 -6 мл . В зависимости от объекта исследования различают неорганический и органический. Количественный анализ , разделяемый, в свою очередь, на элементный, функциональный и молекулярный анализ. Элементный анализ позволяет установить содержание элементов (ионов), функциональный анализ - содержание функциональных (реакционноспособных) атомов и групп в анализируемом объекте. Молекулярный Количественный анализ предусматривает анализ индивидуальных химических соединений, характеризующихся определенной молекулярной массой. Важное значение имеет так называемый фазовый анализ - совокупность методов разделения и анализа отдельных структурных (фазовых) составляющих гетерогенных систем. Помимо специфичности и чувствительности важная характеристика методов Количественный анализ - точность, то есть значение относительной ошибки определения; точность и чувствительность в Количественный анализ выражают в процентах.



К классическим химическим методам Количественный анализ относятся: гравиметрический анализ, основанный на точном измерении массы определяемого вещества, и объёмный анализ. Последний включает титриметрический объёмный анализ - методы измерения объёма раствора реагента, израсходованного на реакцию с анализируемым веществом, и газовый объёмный анализ - методы измерения объёма анализируемых газообразных продуктов.
Наряду с классическими химическими методами широко распространены физические и физико-химические (инструментальные) методы Количественный анализ , основанные на измерении оптических, электрических, адсорбционных, каталитических и других характеристик анализируемых веществ, зависящих от их количества (концентрации). Обычно эти методы делят на следующие группы: электрохимические (кондуктометрия, полярография, потенциометрия и др.); спектральные или оптические (эмиссионный и абсорбционный спектральный анализ, фотометрия, колориметрия, нефелометрия, люминесцентный анализ и др.); рентгеновские (абсорбционный и эмиссионный рентгеноспектральный анализ, рентгенофазовый анализ и др.); хроматографический (жидкостная, газовая, газо-жидкостная хроматография и др.); радиометрические (активационный анализ и др.); масс-спектрометрические. Перечисленные методы, уступая химическим в точности, существенно превосходят их по чувствительности, избирательности, скорости выполнения. Точность химических методов Количественный анализ находится обычно в пределах 0,005-0,1%; ошибки определения инструментальными методами составляют 5-10%, а иногда и значительно больше.

ХИМИЧЕСКИЕ МЕТОДЫ КОЛИЧЕСТВЕННОГО ХИМИЧЕСКОГО АНАЛИЗА

Химические методы количественного химического анализа – основаны на принципе проведения химической реакции с определяемым компонентом анализируемой пробы.

Химические методы химического анализа подразделяют на титриметрический, гравиметрический и волюмометрический методы.

1) методы титриметрии:

Титриметрический анализ (титрование) - методы количественного анализа в аналитической и фармацевтической химии, основанные на измерении объёма раствора реактива точно известной концентрации, расходуемого для реакции с определяемым веществом. Титрование - процесс определения титра исследуемого вещества. Титрование производят с помощью бюретки, заполненной титрантом до нулевой отметки. Титровать, начиная от других отметок, не рекомендуется, так как шкала бюретки может быть неравномерной. Заполнение бюреток рабочим раствором производят через воронку или с помощью специальных приспособлений, если бюретка полуавтоматическая. Конечную точку титрования (точку эквивалентности) определяют индикаторами или физико-химическими методами (по электропроводности, светопропусканию, потенциалу индикаторного электрода и т. д.). По количеству пошедшего на титрование рабочего раствора рассчитывают результаты анализа.