Варка стекломассы. Стекловаренные печи: назначение, общая классификация, показатели эффективности работы Стекловаренная печь периодического действия для ручной выработки стекломассы

26.06.2019 Утепление

Термический процесс, в результате которого из шихты (смеси сырьевых материалов) образуется однородный расплав – стекломасса, называется стекловарением. Варка стекломассы осуществляется в стекловаренных печах при температуре 1350–1500°С. Различают пять стадий варки.

1. Силикатообразование – стадия твердофазных химических реакций. Компоненты шихты под воздействием Т = 900–950°С претерпевают физические и химические изменения, происходят реакции в твердой фазе с образованием двойных карбонатов и силикатов, появляется жидкая фаза за счет плавления эвтектических смесей. В результате образуется плотная спекшаяся масса.

2. Стеклообразование – стадия получения расплава – стекломассы без твердых включений. На этом этапе с повышением температуры до 1200–1250°С завершаются процессы силикатообразования, плавится спекшаяся масса, происходит постепенное растворение избыточного кремнезема (SiO 2) в расплаве силикатов. К концу этой стадии образуется неоднородный по химическому составу расплав, включающий много пузырей.

3. Осветление (дегазация) – стадия освобождения стекломассы от видимых газовых включений. На этом этапе с повышением температуры до Т max = 1400–1500°C снижается вязкость расплава (η = 100 пз), из расплава удаляются видимые мелкие и крупные пузыри газов. В результате получаем прозрачный расплав без газовых включений.

4. Гомогенизация – стадия приобретения стекломассой химической, физической и температурной однородности. Эта стадия протекает одновременно с осветлением при тех же температурах. В ходе процессов конвекции и диффузии происходит выравнивание химического состава расплава и его свойств. В результате получаем однородный расплав – стекломассу.

5. Студка – стадия охлаждения стекломассы. На данном этапе происходит подготовка стекломассы к формованию. Температура стекломассы снижается до 1000–1100°C, в результате чего повышается вязкость расплава (η = 104–108 пз).

В действительности разделение процесса варки стекломассы на пять этапов является условным. Первые четыре стадии накладываются друг на друга и идут практически одновременно, они отделены от пятой стадии (студки) по времени и пространству. Первая, вторая, третья и четвертая стадии происходят в варочной, а пятая – в выработочной зоне печи.

Таким образом, варка стекломассы является сложным физико-химическим процессом. Физические процессы включают нагревание шихты, испарение влаги, плавление компонентов шихты, растворение компонентов шихты в расплаве, полиморфные превращения, улетучивание компонентов; химические процессы – образование силикатов, диссоциацию карбонатов, сульфатов, нитратов, удаление химически связанной воды.

Остановимся подробно на каждой стадии варки.

Силикатообразование занимает 10% от времени варки стекломассы. Подъем температуры внутри слоя шихты происходит очень медленно, поэтому остается достаточно времени для протекания твердофазных реакций.

Основными сырьевыми материалами для натрий-кальций-силикатных стекол являются сода, доломит, известняк, кварцевый песок, которые взаимодействуют друг с другом в твердой фазе и образуют двойные карбонаты и силикаты по реакциям (3):

Na 2 CO 3 + MgCO 3 = Na2Mg(CO 3) 2 Т > 300°C

Na 2 CO 3 + CaCO 3 = Na 2 Ca(CO 3) 2 Т > 550°C

Na 2 Ca(CO 3) 2 + 2SiO 2 =

Na 2 SiO 3 + CaSiO 3 + CO 2 ­ Т = 600–800°C

Na 2 CO 3 + SiO 2 =Na 2 SiO 3 + 2CO 2 ­ Т > 700–850°C

2CaCO 3 + SiO 2 =Ca 2 SiO 3 + 2CO 2 ­ Т > 600°C

Происходит плавление эвтектики CaNa 2 (CO 3) 2 –Na 2 CO 3 при Т = 740–800°C и плавление соединений: CaNa 2 (CO 3) 2 при Т = 813°C и Na 2 CO 3 при Т = 850°C. Полученный расплав обволакивает зерна SiO 2 .

Идут процессы диссоциация карбонатов (4):

MgCO 3 = MgO + CO 2 ­ (P = 1 бар) Т = 540°C

CaCO 3 = CaO + CO 2 ­ (P = 1 бар) Т = 910°C

Na 2 Ca(CO 3) 2 = CaO + Na 2 O + 2CO 2 ­ (P = 1 бар) Т = 960°С

Выделившиеся газы СО 2 делают спек пористым. Идут модификационные превращения зерен кварца.

Превращение α кварц ® β кварц имеет принципиальное значение, так как при этом происходит уменьшение прочности зерен, в них возникают микротрещины, в результате чего повышается их реакционная способность.

Реакции в свинцово-поташной шихте несколько отличаются от содовой шихты. Основными сырьевыми материалами для хрусталя являются кварцевый песок, поташ и свинцовый сурик. Реакции силикатообразования осуществляются в следующем порядке (6):

K 2 CO 3 + SiO 2 = K 2 SiO 3 + CO 2 ­ Т = 300°C

2Pb 3 O 4 = 6PbO 2 + 2O 2 ­ Т = 445–597°C

PbO = SiO 2 = PbSiO 3 Т = 480–580°C

2K 2 CO 3 + 3SiO 2 = K 2 SiO 3 + K 2 Si 2 O 5 + 2CO 2 ­ Т = 600–800°C

плавление Pb 3 O 4 Т = 830°C

плавление PbO Т = 886°C

двойной силикат свинца PbO + SiO 2 = PbSi 2 O 5

Процессы силикатообразования изучают с использованием методов ДТА – дифференциальнотермического анализа, ДТG – термогравиметрии; с помощью газового анализатора устанавливают качественный и количественный состав образующихся газов; с помощью РФА – рентгенофазового анализа – качественный и количественный состав твердого спека.

К способам ускорения стадии силикатообразования относятся:

а) повышение содержания в шихте легкоплавких компонентов (щелочных и щелочноземельных оксидов, боратов);

б) введение в шихту 1% ускорителей варки (фторидов, хлоридов, солей аммония), снижающих температуру реакций силикатообразования на 80–100°C;

в) увлажнение шихты до 3–5%;

г) силикатообразование – эндотермический процесс, который идет с поглощением тепла и требует больших затрат теплоты. При повышении температуры на 100–150°C силикатообразование ускоряется в 2 раза.

Стеклообразование занимает 80% времени варки стекломассы. После завершения стадии силикатообразования в спеке в твердом виде присутствует примерно 30% избыточного количества зерен кварца. На стадии стеклообразования происходит растворение кварца в расплаве силикатов. Этот процесс очень медленный, идет в диффузионном режиме (с энергией активации Е а = 43,7 ккал/моль).

Процесс растворения твердого SiO 2 в расплавах сводится к двум этапам: разрушение кристаллической решетки твердого тела и переход частиц в расплав; диффузия перешедших в расплав частиц SiO 2 .

На скорость стеклообразования влияют следующие условия:

а) размер и форма кварцевых зерен: угловатые и мелкие зерна растворяются быстрее, чем округлые и крупные (оптимальный размер частиц r = 0,1–0,7 мм);

б) чем выше концентрация щелочных оксидов в расплаве, тем меньше время растворения SiO 2 ;

в) чем выше температура варки, тем быстрее идет растворение SiO 2: при увеличении температуры на каждые 10°С скорость стеклообразования увеличивается на 10%;

г) дополнительное введение поверхностно-активных веществ, снижающих поверхностное натяжение расплава, способствует увеличению скорости растворения (например, введение сульфидов в количествах 0,1–0,3% увеличивает скорость стеклообразования на 30%);

д) высокая вязкость затрудняет диффузию, для снижения вязкости стекломассы требуется повышение температуры. Оптимальной температурой является Т = 1550–1600°C, кроме того, при этом весь SiO 2 переходит в аморфную модификацию;

е) конвективные потоки стекломассы ускоряют процессы диффузии, поэтому механическое перемешивание с помощью пропеллерных керамических мешалок в зоне варки увеличивает скорость удаления продуктов растворения зерен SiO 2 из диффузионной зоны и уменьшает время растворения.

Осветление – освобождение стекломассы от видимых газовых включений. Источниками газов в стекломассе являются:

а) воздух, адсорбированный частицами шихты;

б) влажность шихты – 3–7% H 2 O;

в) возгонка лекголетучих компонентов шихты As 2 O 3 , NH 4 Cl, СаF 2 и др.;

г) разложение компонентов шихты: Н 3 ВО 3 = 3Н 2 О + В 2 О 3 ; Ме 2 СО 3 = Ме 2 О + СО 2 ; MeSO 4 = MeO + SO 3 ;

д) взаимодействие стекломассы с атмосферой печи, которая содержит 88% N 2 , 12% CO 2 , в результате чего угар шихты составляет 17–20%.

Освобождение стекломассы от газовых включений имеет большое практическое значение для борьбы с дефектами стекла – пузырями. Между газами, высвобождающимися при разложении компонентов шихты, газами печной атмосферы и стекломассой происходит взаимодействие, вследствие чего газы растворяются в стекломассе.

Следует различать физическое и химическое растворение газов. При физическом растворении газ переходит в расплав, не изменяя химической формы:

О 2 атм. ® О 2 расп.

В отсутствие поливалентных ионов кислород О 2 и инертные газы растворяются в основном физически. При химическом растворении газ переходит в расплав, изменяя химическую форму:

СО 2 атм. ® (СО 3) 2 расп.

Вода Н 2 О, азот N 2 , сернистые газы SO 2 , углекислый газ СО 2 , кислород О 2 (в присутствии поливалентных ионов) растворяются в основном химически. Отношение количества физически растворимых газов к химически растворимым 1/1000…10000.

Растворимость газов зависит от состава стекломассы. В боратных расплавах растворимость Н 2 О выше, чем в силикатных. Это объясняется большей устойчивостью группировок =В–ОН по сравнению с ≡Si–OH. С увеличением кислотности расплава растворимость SO 3 падает.

Растворимость газов зависит от температуры. С ростом температуры увеличивается растворимость всех газов за исключением сернистых. При повышении Т пузыри SO 3 сжимаются, поэтому сульфатное осветление проводят при более низкой температуре.

Растворенные газы влияют на свойства стеклообразующего расплава. Понижение вязкости стекломассы связано с разрушением мостиковых кислородов, понижением степени связанности каркаса и повышением подвижности частиц. Например, поверхностное натяжение стекломассы уменьшается, так как SO 4 2– , CO 3 2– , OH – вытесняются в поверхностный слой и играют роль поверхностно-активных веществ (ПАВ).

Процессы выравнивания концентрации газа в расплаве или между расплавом и атмосферой печи определяются диффузией растворенного газа. Коэффициент диффузии всех газов увеличивается с ростом температуры.

Осветление стекломассы протекает следующим образом. Газовый пузырь образуется на дне бассейна и удерживается на твердой поверхности за счет сил поверхностного натяжения. На газовый пузырь в расплаве действует подъемная сила Архимеда и сила Стокса, которая препятствует движению пузыря вверх. В условии равновесия силы Архимеда и Стокса равны, можно рассчитать скорость подъема пузыря:

http://investobserver.info/wp-content/uploads/stroimat/image004.png" width="93" height="37">

где V – скорость подъема пузырьков; r – радиус газового пузырька; ρ c , ρ г – плотность стекломассы и газа; η – вязкость стекломассы.

Уравнение справедливо для пузырей с радиусом более 0,4 мм. Исследования кинетики газовыделения показывают, что при 175°C происходит удаление влаги и гидратной воды, при 525°C – удаление химически связанной воды, при 300°C – CO 2 из MgCO 3 , при 700°C – CO 2 из BaCO 3 , K 2 CO 3 , Na 2 CO 3 , при 675°C – разложение нитратов и выделение O 2 , NO 2 , NO, при 1050°C – выделение O 2 из осветлителя: Sb 2 O 5 = Sb 2 O 3 + O 2 .

На скорость осветления стекломассы влияют:

а) механическое перемешивание (стекломассу перемешивают с помощью механических мешалок или ультразвука, что позволяет увеличить скорость осветления на 30–60%);

б) бурление стекломассы сжатым воздухом через дно печи, что особенно эффективно для удаления СО 2 ;

в) повышение температуры в зоне осветления на 10°С, приводящее к увеличению скорости осветления на 5%. При этом понижается вязкость расплава и повышается скорость подъема газовых пузырьков;

г) дополнительный электроподогрев стекломассы в зоне осветления, что позволяет ускорить процесс в 3 раза, так как подогрев индуцирует конвекцию;

д) дополнительное введение в шихту 1% осветлителей – веществ, которые при высокой температуре (более 1200°С) разлагаются и выделяют крупные пузыри газов. Благодаря различию парциальных давлений газов-осветлителей и попутных газов, а также диффузии газов из области с высоким парциальным давлением в область с низким парциальным давлением, маленькие пузырьки попутных газов исчезают, а пузырьки газов-осветлителей растут, захватывая другие газовые включения, и поднимаются на поверхность. Таким образом, осуществляется процесс дегазации стекломассы.

Гомогенизация – это процесс повышения однородности стекломассы. Причинами неоднородности стекломассы являются: неоднородность состава стекла (так как содержание отдельных оксидов различно: SiO 2 – 50–70%, Ме 2 О – 15%, МеО – 10%, то в стекломассе образуются различные по составу силикаты); неоднородность сырьевых материалов от партии к партии; различный гранулометрический состав сырьевых компонентов; неоднородность или расслоение шихты.

После стадии осветления неоднородная по химическому составу стекломасса имеет ячеистую структуру. Задача стадии гомогенизации – разрушение ячеистой структуры, усреднение химического состава, повышение ее однородности.

Конвективные потоки оказывают существенное влияние на скорость осветления. Под влиянием конвективных потоков стекломассы в печи, обусловленных градиентным распределением температуры, ячейки растягиваются в свили, тонкие нитевидные включения другого химического состава. Свили, обогащенные SiO 2 , имеют меньшее поверхностное натяжение по сравнению со стекломассой и поэтому легко растворяются в ней. Свили, обогащенные Al 2 O 3 , имеют большее поверхностное натяжение по сравнению со стекломассой и потому плохо растворяются. Наличие свилей свидетельствует о плохом качестве стекломассы.

Движущей силой конвекции является градиент температуры и плотности стекломассы. Движение стекломассы в печи смешанное, число Рейнольдса (Re) изменяется от 1–2 до 20–30. Скорость стекломассы в производственном потоке составляет 2–30 м/ч. Существуют также поперечные конвективные потоки (V = 1,5 м/ч). В результате возникновения продольных и поперечных конвективных потоков стекломасса совершает сложное винтообразное движение.

Также важную роль в процессах гомогенизации играет диффузия. Движущей силой диффузии является градиент химического потенциала (градиент концентрации компонента), направленный в сторону его уменьшения. Коэффициент диффузии (D) зависит от природы катиона: коэффициент диффузии у катионов модификаторов (Nа, Li, К) на порядок выше, чем у катионов стеклообразователей Si, В, Р, кроме того, с ростом радиуса катиона D уменьшается, а с ростом температуры – увеличивается.

На скорость гомогенизации влияют:

а) бурление стекломассы сжатым воздухом, что создает дополнительные конвективные потоки и увеличивает скорость гомогенизации в 2 раза;

б) механическое перемешивание, которое увеличивает скорость конвекции и диффузии и на 12–15% повышает скорость гомогенизации;

в) дополнительный электроподогрев, увеличивающий скорость конвекции и диффузии на 20%.

Степень однородности стекломассы влияет на выход годных изделий в соответствии с уравнением

у = ах 2 + вх + с,

где у – выход годных изделий; х – степень однородности; а, в, с – постоянные, зависящие от состава стекломассы.

Однородность стекломассы непосредственно определяет долговечность стеклоизделий и влияет на их механические, химические свойства и термостойкость. Определяют ее электрохимическим методом по падению потенциала на концах платиновых электродов. Для химически однородной стекломассы ЭДС < 3 мВ. Однородность стекла определяют по разбросу значений показателя преломления и плотности стекла, допускаются отклонения Δn и Δd соответственно 0,005 и 0,01 г/см 3 .

Студка – это подготовка стекломассы к формованию. В результате студки стекломасса должна обладать вязкостью: 4,8·10 8 дПа·с – для ручного формования изделий; 10 9 –10 8 дПа·с – для механического формования; 10 9 –10 8 дПа·с – для механического выдувания электролампового стекла.

Главное условие студки – постепенное непрерывное и медленное снижение температуры стекломассы без изменения состава и давления газовой атмосферы печи, чтобы не спровоцировать образование вторичных газовых включений – «мошки», а также без нарушения термической однородности стекломассы, которая может вызвать разнотолщинность листового стекла и колебания веса капель для штучных изделий.

К способам охлаждения стекломассы относятся:

а) преграды по газовому пространству в виде экрана, моста, сужения свода для ослабления подачи тепла излучением из варочной в выработочную зону печи;

б) преграды по стекломассе в виде керамических лодочек, пережима, протока, которые способствуют потерям тепла стекломассой.

Контроль качества стекломассы проводится на протяжении всего времени варки. За положением границы пены и зеркалом стекломассы следят телевизионные камеры. Стекловар каждый час берет пробы стекломассы из всех зон варки, контролирует цвет, наличие твердых и газовых включений. Контроль за постоянством уровня стекломассы осуществляется автоматически уровнемером, который заблокирован с загрузчиком шихты. Контроль за состоянием кладки печи осуществляется из смотровых окон в торцах стен печи. Контроль за постоянством химического состава стекла и его свойств осуществляется химическими методами в заводской лаборатории.

Варка стекломассы осуществляется в стекловаренных печах. По принципу действия они делятся на печи периодического и непрерывного действия. Горшковые печи – это печи периодического действия, в одном и том же объеме последовательно во времени протекают все пять стадий варки. Их используют для варки оптических, цветных стекол и хрусталя. Производительность горшковых печей 0,6–4 т/сут, КПД 6–8%.

Ванные печи – это печи непрерывного действия, в отдельных частях печи в одно и то же время протекают пять стадий варки. Производительность 4–400 т/сут, КПД 17–28%. Их используют для варки листового, тарного и сортового стекла. Они классифицируются:

а) по виду топлива – газовые, электрические и с жидким топливом;

б) по типу теплообменника – рекуперативные и регенеративные;

в) по конструкционным особенностям – с протоком, с пережимом;

г) газовые по направлению пламени – с поперечным, продольным и подковообразным;

д) электрические печи по принципу передачи тепла – прямого нагрева, косвенного нагрева и высокочастотные.

Контроль работы стекловаренной печи достигается соблюдением установленных теплового и технологического режимов работы печи, зависящих от типа печи, ее размеров, производительности, состава стекла и шихты, от вида топлива, автоматизации и механизации.

Тепловой режим зависит от расхода топлива, давления и состава природного газа. Давление и состав газов в печи определяются соотношением газа и воздуха, интенсивностью тяги (разрежением в дымовой трубе). Состав газов в печи может меняться в зависимости от условий сгорания.

Характер газовой атмосферы в печи определяется концентрацией СО и О 2: окислительная – О 2 > 2%, восстановительная – СО = 0,3–0,4%, нейтральная – СО = 0%.

В теплообменниках – регенераторах и рекуператорах – используется тепло отходящих дымовых газов для подогрева рабочих газов (природного газа и воздуха). В керамических рекуператорах (труба в трубе) температура газов достигает 1000°С. Преимуществом рекуператора являются низкая стоимость и постоянство температуры подогрева холодного воздуха (600–700°С). К недостаткам относится низкий КПД.

Регенератор обычно состоит из высокой камеры. Располагаются регенераторы попарно с обеих сторон ванной печи, камера регенератора заполнена огнеупорным материалом, решетка регенератора выкладывается с учетом наибольшей поверхности соприкосновения газов. Горячие дымовые газы, проходя по свободным каналам, нагревают кладку регенератора. Когда огнеупоры нагрелись до определенной температуры (1100°С), направление пламени автоматически переключается. В подогретую камеру подается холодный воздух, который нагревается до 300–500°С. Преимуществом регенератора является более полное использование тепла дымовых газов, более высокий КПД по сравнению с рекуператором.

Для строительства стекловаренных печей необходимы огнеупорные материалы. К ним предъявляются следующие требования:

а) высокая огнеупорность (жаростойкость). Огнеупоры должны быть устойчивы к температурам выше 1500°С;

б) высокая коррозийная устойчивость. Низкая растворимость огнеупоров в стекломассе. Существует правило: кислые огнеупоры – для кислых расплавов стекломассы, основные огнеупоры – для основных расплавов;

в) термостойкость – устойчивость огнеупоров к колебаниям температур. Огнеупоры с высокой пористостью обладают высокой термостойкостью, но незначительной прочностью;

г) достаточная механическая прочность;

д) низкая теплопроводность огнеупоров, которая играет важную роль для распределения температур и потерь тепла в печах;

е) электросопротивление огнеупоров должно быть выше, чем у расплава стекломассы, с тем чтобы при варке в электрических печах огнеупоры не плавились.

Исходя из перечисленных требований, для стекловаренной печи используют разные огнеупоры, отличающиеся по составу и свойствам.

По способу получения огнеупоры делятся на керамические, получаемые спеканием, и плавленные, формируемые литьем.

Керамические огнеупоры используют для кладки стен и свода печи. Это шамот (Al 2 O 3 30–43%, SiO 2 51–66%), динас (SiO 2 94–98%), муллит (Al 2 O 3 60–75%, SiO 2 21–40%). Преимущества керамических огнеупоров: высокая термостойкость, высокая пористость, высокая огнеупорность.

Плавленые огнеупоры используют для кладки стен и дна ванны бассейна. Это бакор 33 (Al 2 O 3 49–50%, ZrO 2 32–34%, SiO 2 12–13%), плавленый кварц (SiO 2 99%). Преимущества плавленых огнеупоров: низкая пористость, высокая механическая прочность, высокая коррозийная устойчивость, высокая огнеупорность. Недостатки: низкая термостойкость и радиационная опасность.

Важнейшими критериями для подбора огнеупоров являются долговечность, безопасность и надежность, коррозийная стойкость; цена огнеупоров принимается во внимание в последнюю очередь.

Процесс перехода порошкообразной шихты при нагревании в стекломассу сопровождается сложными физико- химическими превращениями и проходит в несколько стадий. Важнейшие из них; силикатообразование, стек- лообразование, дегазация (осветление), гомогенизация и студка стекломассы. На первой стадии - силикатооб- разования - при нагреве шихты до 800-900 °С происходит испарение влаги шихты, диссоциация углекислых и сернокислых солей кальция, магния и натрия с выделением газообразных продуктов (С02, S02 и Н20), взаимодействие между компонентами шихты с образованием силикатов, при этом появляется жидкая фаза за счет плавления соды и эвтектических смесей, и шихта превращается в спекшуюся массу.

На второй стадии - стеклообразования - при повышении температуры до 1150-1200 °С завершаются реакции силикатообразования, образуется неоднородная по составу, пронизанная большим количеством газовых пузырьков стекломасса, а не прореагировавшие зерна кварца, количество которых достигает 25 %, и другие компоненты растворяются в силикатном расплаве. Процесс стеклообразования протекает в 8-9 раз медленнее, чем силикатообразование.

На третьей стадии - дегазации - при повышении температуры до 1400-1500°С за счет снижения вязкости стекломассы до 10 Па-с происходит ее дегазация и осветление, при этом устанавливается равновесие между растворенными газами и стекломассой, а мельчайшие газовые пузырьки перестают быть видимыми. Эта стадия наиболее продолжительна по времени, так как газы из стекломассы удаляются медленно.

На четвертой стадии - гомогенизации - происходит усреднение состава стекломассы за счет интенсивного перемешивания поднимающимися к поверхности пузырьками воздуха, что необходимо для выработки стек- лоизделий. Процесс гомогенизации происходит параллельно с дегазацией, но по времени несколько дольше.

На последнем этапе варки стекла - студке стекломассы - происходит равномерное снижение ее температуры на 200-300 °С. Этот этап является подготовительной операцией к выработке стекломассы. При выработке стекла вязкость стекломассы должна быть не менее 100 Па-с, что соответствует температуре 1150-1200 °С.

Для варки стекла применяют печи периодического действия (горшковые и ванные малой емкости) и непрерывного действия (ванные печи с большой производительностью). В печах периодического действия все стадии стекловарения протекают в одном и том же рабочем объеме последовательно одна за другой (в различное время), а в ванных печах непрерывного действия все процессы стекловарения происходят одновременно, причем каждому из них соответствует определенная часть рабочего объема печи.

В стекольной промышленности широко применяют ванные печи различных конструкций и размеров (6.3), зависящих от состава стекла, способа выработки, производительности и др. По способу передачи теплоты стекломассе различают ванные печи пламенные с различным направлением пламени, электрические и пламен- но-электрические, в которых сочетается верхний пламенный нагрев с глубинным электропрогревом стекломассы. Применение электропечей для варки стекла основано на свойстве стекломассы при высоких температурах (свыше 1000-1100 °С) проводить электрический ток с выделением тепла.

Ванные печи непрерывного действия применяют для варки и выработки листового, сортового, тарного, посудного и другого стекла. Они оборудованы механическими загрузчиками и системами автоматического контроля и регулирования. Особенностями варки стекла в ванных печах непрерывного действия являются постоянное перемещение шихты и стекломассы от загрузочной части к выработочной, а также варка стекломассы в поверхностных слоях.

Бассейны ванных печей могут быть разнообразными по конструкции, но в любом бассейне имеются зоны загрузки, варки стекла, осветления, студки и выработки, в которых поддерживается определенный температурный режим (6.4). Максимальную температуру (1450- 1500°С) стекломасса имеет в начале зоны осветления, расположенной в средней части варочного бассейна. Регулирование режима варки стекла облегчается при разделении бассейна печи сплошными или решетчатыми перегородками (экранами), заградительными лодками и др., преграждающими путь непроваренной стекломассе.

Для поддержания постоянного уровня стекломассы в бассейне в целях обеспечения надлежащего режима питания выработочных машин и предотвращения преждевременного разрушения огнеупорного материала бассейна загрузка шихты в ванную печь осуществляется непрерывным способом. После варки и осветления стекломасса поступает в студочную часть и далее в выработоч- ные каналы, ведущие к подмашинным камерам. Передвижение стекломассы в бассейнах происходит в связи с непрерывной выработкой стекла, различными плотностями проваренной и непроваренной стекломассы, разницей температуры по длине и ширине бассейна, приводящей к возникновению конвекционных потоков.

Для варки листовых стекол применяют, как правило, регенеративные печи непрерывного действия большой производительности (до 250 т стекломассы в сутки) с поперечным направлением пламени, с разделением между варочной и выработочной частями заградительными лодками. В электрических и пламенно-электрических печах варка стекла осуществляется также в несколько стадий (как в пламенных печах), но все процессы протекают последовательно в вертикальном направлении, и в результате сильных конвекционных потоков процесс варки протекает более интенсивно. Коэффициент полезного действия электрических печей в 3-5 раз выше, чем пламенных, вследствие лучшего использования тепла и уменьшения тепловых потерь, удельный съем стекломассы высок - 1200-3000 кг/м2 сут.

Каждый из нас ежедневно имеет дело со стеклянными изделиями. Но мало кто интересовался тем, из чего они состоят. А процесс создания данного материала очень увлекателен и интересен. Область использования его очень велика.

Компоненты для варки стекла

Основным компонентом, из которого получают стекло, является кварцевый песок. И чтобы из данного непрозрачного сыпучего материала получился чистый монолит, его нагревают до очень большой температуры в печах непрерывной работы.

Варка стекла является самым сложным и ответственным процессом. На этом этапе песчинки начинают сплавляться между собой. В связи с тем, что остывание стеклянной массы происходит довольно быстро, то они не успевают возвратиться в свое изначальное состояние.

Помимо этого, в состав стекла еще входят следующие ингредиенты:

  • вода;

  • известняк;

  • сода.

А для получения цветного изделия, в расплавленную стеклянную массу добавляют оксиды различных металлов.

Процессы варки стекла

Варка стекла состоит из следующих процессов:

  1. Тщательное перемешивание всех ингредиентов, которые вымерены при помощи точных весов.

  2. Отправление полученной массы в печь, где происходит их нагрев до температуры в 1600°С. Во время данного процесса, расплавляются самые тугоплавкие компоненты.

  3. Формирование однородной массы (гомогенизация). Тут удаляются все пузырьки газа. Получается однородный расплав.

  4. «Купание» стеклянной массы в расплавленном олове. Его температура достигает 1000°С. Благодаря тому, что олово имеет меньшую плотность, стекло не перемешивается с ним, оставаясь на поверхности. Оно так быстрее остывает и становится идеально гладким.

  5. Варка стекла завершается охлаждением стекломассы. После «оловянной ванны» температура его снижается до 600°С, но для затвердевания это еще очень много. Поэтому стеклянное изделие охлаждают еще раз, помещая на вращающиеся ролики. Остается оно там до температуры в 250 градусов. Для того, чтобы стекло не треснуло, процесс его охлаждения должен происходить медленно.

  6. Фиксация формы стеклянного изделия осуществляется при помощи быстрого охлаждения.

В связи с тем, что стекло имеет маленькую теплопроводность, возникают большие перепады температуры. Это приводит к напряжению внутри самого стеклянного изделия. В связи с этим, после формирования обязательным процессом идет отжиг. Данный процесс основывается на охлаждении полученного изделия по специальному режиму. Это быстро до момента затвердевания. Медленное, когда стекло начинает переходить из пластичного состояния в хрупкое. И затем опять быстрое охлаждение, до достижения уже нормальной температуры.

Отжиг можно осуществлять сразу после формирования изделия либо после повторного нагревания (до температуры размягчения стеклянной массы).

Толщина материала напрямую связана с количеством расходного вещества, которое попадает в ванную. Чем его меньше, тем тоньше получается стекло.

После обрезки полученного листа стекла до необходимых размеров, остатки помещаются обратно в печь. Таким образом, данный процесс является безотходным производством.

Печи для варки стекла

Для варки стекла используются печи с периодическим действием горшкового и ванного типа с не большой емкостью. Принцип их действия непрерывный. Периодическая печь для варки стекла имеет последовательные процессы. Они протекают один за другим через определенный промежуток времени. Печь для варки стекла с непрерывным принципом работы и основанная на ванном типе, включает в себя одновременные процессы, каждый из которых сопровождается определенным объемом работы.

Конфигурации и размеры ванн печей для варки стекла

В стеклянной промышленности очень часто применяются ванные печи для варки стекла различной конфигурации и размеров.

Все эти параметры напрямую связаны со следующими особенностями:

  • составом стекла;

  • способом его выработки;

  • производительностью и многим другим.

В зависимости от вида передаваемого тепла, печи для варки стекла могут быть пламенными, с разным направлением самого пламени, электрическими и пламенно-электрическими. Последний тип основан на верхнем пламенном и глубоком электрическом прогреве стекла.

Принцип варки стекла в печах

Принцип варки в электрической печи основывается на самих особенностях стекломассы, которые проявляются при сильно высокой температуре, более 1100°С. В результате выделения тепла стекло может проводить ток.

Печи ванного типа с постоянной работой используют для варки и производства: листового, тарного, сортового, посудного и других типов стекла. В таких установках присутствует механическая загрузка и автоматическая проверка, с регулированием самого процесса.

Особенностью данных устройств является непрерывное движение стекломассы и самой шихты от загрузочного блока к выработочному. В таких печах варка стекла происходит в верхних слоях.

Бассейн печи может иметь произвольное построение, но обязательно должен быть обустроен стандартными зонами, такими как: загрузка, варка, осветление, охлаждение и выработка. Обладают такие конструкции и стандартными тепловыми режимами.

Температуры стекла в таких печах (в самом начале зоны осветления) составляет порядка 1450 – 1500 градусов. Благодаря специальному разграничению бассейна цельными либо же решетчатыми перегородками, существенно улучшается регулировка режима варки стекла. Такие заградительные конструкции способствуют преграждению пути плохо проваренной массы.

Для того, чтобы уровень стекла в бассейне был на постоянном уровне, загрузка выполняется в постоянном режиме. Это позволяет:

  • обеспечить надлежащий уровень питания;

  • предотвратить своевременный износ огнеупорной конструкции самого бассейна.

Для изготовления листового стекла используются регенеративные печи с постоянной работой и большой производительностью. Они способны вырабатывать до 250 тонн стекла за один день.

В электрических и пламенно-электрических печах варочный процесс основывается на нескольких этапах (аналогично пламенным установкам). Но в данном случае они осуществляются подряд друг за другом в вертикальном направлении. Благодаря мощным конвекционным потокам, процесс варки стекла проходит быстрее.

Стоит помнить, что КПД электрических установок в несколько раз (от 3 до 5) больше, по сравнению с пламенными печами. Тепловые потери тут меньше.

Печи для варки стекла на выставке

Крупнейшая выставка стеклянной промышленности, которая пройдёт в ЦВК «Экспоцентр» каждый год позволяет производителям данной сферы проявить себя. В павильонах демонстрируется продукция от разных стран мира.

Здесь можно заключить очень выгодные контракты сотрудничества с одной из сотни иностранных компаний-производителей стекла. А может даже и с несколькими.

Представленное оборудование отвечает всем международным нормам и стандартам. Оно способно усовершенствовать и ускорить производство. Это позволит сэкономить существенные материальные затраты и привести к росту качества продукции, что не останется не замеченным клиентами.

Для выработки изделий из стекла с различными заданными свойствами служат стекловаренные печи разных типов, отличающиеся по конструкции, производительности и режиму работы.

Стекловаренная печь - основной агрегат стекольного производства. В ней протекают процессы тепловой обработки сырьевых материалов, получения стекломассы и выработки из нее изделий.

Для варки стекла применяют стекловаренные печи периодического и непрерывного действия.

По устройству рабочей камеры стекловаренные печи разделяются на горшковые и ванные.

Горшковые печи - периодического действия, их применяют для варки высококачественных оптических, светотехнических, художественных и специальных стекол.

Ванные печи бывают непрерывного и периодического действия. Ванные печи непрерывного действия имеют ряд преимуществ перед горшковыми и ванными печами периодического действия: они более экономичны, производительны и удобны в обслуживании.

По способу обогрева стекловаренные печи подразделяют на пламенные, электрические и газоэлектрические (комбинированный газовый и электрический обогрев).

В пламенных печах источником тепловой энергии служит сжигаемое топливо. Шихта и стекломасса в этих печах получают тепло от сжигания жидкого или газообразного топлива. Коэффициент полезного действия пламенных печей 18-26%. так как топливо в них расходуется главным образом на нагревание огнеупорной кладки печи и компенсацию потерь тепла. Электрические печи по сравнению с пламенными имеют ряд преимуществ: меньшие размеры, большую производительность. Они экономичны, легко регулируются. При их эксплуатации нет теплопотерь с отходящими газами и лучше условия труда. Коэффициент полезного действия электрических печей достигает 50-60%.

По способу передачи тепла стекломассе электрические печи подразделяются на дуговые; печи сопротивления (прямого и косвенного) и индукционные. В дуговых печах тепло передается материалу излучением от вольтовой дуги. Наибольшее распространение получили печи прямого сопротивления, в которых нагревательным элементом служит непосредственно стекломасса. В этих печах тепло выделяется в самом материале, который служит сопротивлением в цепи.

Использование стекломассы в качестве нагревательного сопротивления основано на том, что стекло при повышенных температурах проводит электрический ток, причем электропроводность его с повышением температуры увеличивается. Проходя через стекломассу, электрическая энергия превращается в тепловую, происходит нагревание и варка стекла. Для питания электрических печей прямого нагрева используется однофазный или трехфазных ток, который подводят к стекломассе через молибденовые или графитовые электроды.

Электрические печи прямого сопротивления имеют различные конструкции, однако большинство из них представляет собой горизонтальные ванны прямоугольного сечения. Применяют эти печи для варки технических стекол, а при наличии дешевой электроэнергии и в производстве массовой продукции.

В печах косвенного сопротивления тепло передается материалу излучением или теплопроводностью от введенного в печь сопротивления.

В индукционных печах в материале, включенном во вторичную цепь, индуцируется ток.

Газоэлектрические печи имеют комбинированный нагрев: бассейн для плавления шихты обогревается газообразным топливом, а бассейн для осветления стекломассы - электрическим током. Отходящие из печей газы имеют температуру 1350-1450° С. Тепло их используют для подогрева воздуха и газа, поступивших для горения.

По способу использования тепла отходящих газов стекловаренные печи подразделяют на регенеративные и рекуперативные.

Регенеративные печи получили большее распространение из-за их простого устройства и удобства в эксплуатации.

Работа стекловаренных печей оценивается производительностью, расходом тепла на варку стекла и коэффициентом полезного действия (КПД) печи, который представляет собой отношение количества тепла, полезно затраченного на варку стекла, к общему расходу тепла на печь.

Производительность печи характеризуют двумя показателями: общей (суточной) и удельной производительностью. Общая производительность равна количеству тонн стекломассы (или годной продукции), снимаемой с печи в сутки. Удельная производительность измеряется отношением суточной производительности к площади бассейна печи и выражается в кг/м 2 /сут.

В стекловаренной печи при высокой температуре в шихте происходят различные процессы и разнообразные превращения. При сравнительно низких температурах (около 400˚ С) между мат-ми шихты нач-ся хим. реакции, ведущие к образованию силикатов. По мере дальнейшего нагревания шихта превращается в расплав различных солей. Образовавшиеся силикаты и остатки непрореагировавших компонентов спекаются в плотную массу. Это первая стадия варки стекла – силикатообразование (температурный режим – 800-900° С).

При последующем повышении темп-ры силикаты расплавляются и растворяются одни в других. Образуется пенистый и непрозрачный расплав, пронизанный частицами мат-лов шихты и пузырьками газов, выделяющихся во время реакций.

Постепенно твёрдые остатки шихты растворяются в расплаве, пена исчезает, образуется прозрачная стекломасса. Это вторая стадия стекловарения – стеклообразование (1150-1200° С).

Полученная стекломасса содержит в себе газообразные вкл-я различных размеров и неоднородна по хим. составу. Поэтому она ещё непригодна для выработки изделий.

Процесс удаления из стекломассы пузырей (дегазация) называется осветлением (1400-1500° С). Заключается в выделении газообразных включений из стекломассы при дальнейшем её нагреве за счёт снижения вязкости последней. Для ускорения процесса через стекломассу могут пропускать сжатый воздух или пары воды (барботирование), добавлять осветлители. Принцип ускорения процесса в том, чтобы насытить стекломассу крупными газообразными включениями. Такие пузыри сравнительно легко поднимаются к поверхности. При этом они захватывают по пути мелкие пузыри, которые самостоятельно поднимаются очень медленно или не поднимаются вовсе по причине довольно высокой вязкости стекломассы.

Процесс выравнивания хим. состава стекломассы называется гомогенизацией . Представляет собой длительную выдержку стекломассы при высоких температурах (около 1500° С). При этом в результате диффузии расплава стекломасса становится химически однородной.

Полученная однородная стекломасса охлаждается до вязкости, необходимой для формования из неё изделий (около 1200° С). Процесс называется студкой.

Таким образом, в процессе варки стекла можно условно выделить пять основных этапов: силикатообразование, стеклообразование, осветление, гомогенизация и студка. На практике только первая и последняя стадии протекают в разное время и в разных местах ванной печи. Вторая, третья четвёртая стадии начинаются практически одновременно. Для варки стекла используют горшковые и ванные печи. Последние могут быть периодического и непрерывного принципа действия.

6. Окраска стекла, обесцвечивание стекла, прозрачность стекла

Окраску стекла осуществляют введением в него оксидов некоторых металлов или образованием коллоидных частиц определенных элементов. Так, золото и медь при коллоидном распределении окрашивают стекло в красный цвет. Такие стекла называют золотым и медным рубином соотв-но. Серебро в коллоидном состоянии окрашивает стекло в желтый цвет. Хорошим красителем является селен. В коллоидном состоянии он окрашивает стекло в розовый цвет, а в виде соединения CdS·3CdSe – в красный. Такое стекло называют селеновым рубином. При окраске оксидами металлов цвет стекла зависит от его состава и от количества оксида-красителя. Например, оксид кобальта (II) в малых количествах дает голубое стекло, а в больших – фиолетово-синее с красноватым оттенком. Оксид меди (II) в натрий-кальциевом стекле дает голубой цвет, а в калиево-цинковом – зеленый. Оксид марганца (П) в натрий-кальциевом стекле дает красно-фиолетовую окраску, а в калиево-цинковом – сине-фиолетовую. Оксид свинца (II) усиливает цвет стекла и придает цвету яркие оттенки. Бутылочное стекло низкого сорта, как правило, имеет окраску, которая зависит от присутствия в нем ионов Fe 2+ и Fe 3+ . Стекольное сырье трудно очищается от железа и поэтому в дешевых сортах оно всегда присутствует. Поскольку в стекле одновременно содержатся как ионы Fe 2+ , так и ионы Fe 3+ , они и придают стеклу зеленоватую окраску (бутылочный цвет).Существуют хим. и физ-е способы обесцвечивания стекла. В химическом способе стремятся все содержащееся железо перевести в Fe 3+ . Для этого в шихту вводят окислители – нитраты щелочных металлов, диоксид церия СеO 2 , а также оксид мышьяка (III) As 2 O 3 и оксид сурьмы (III) Sb 2 O 3 . Хим. обесцвеченное стекло лишь слегка окрашено (за счет ионов Fe 3+) в желтовато-зеленоватый цвет, но обладает хорошим светопропусканием. При физ. обесцвечивании в состав стекла вводят «красители», т.е. ионы, которые окрашивают его в дополнительные тона к окраске, создаваемой ионами железа, – это оксиды никеля, кобальта, редкоземельных элементов, а также селен. Диоксид марганца MnO 2 обладает св-ми как хим., так и физ-го обесцвечивания. В результате двойного поглощения света стекло становится бесцветным, но его светопропускание понижается. Таким образом, следует различать светопрозрачные и обесцвеченные стекла, поскольку эти понятия различны.Следует также отметить, что окрашенное стекло иногда предохраняет содержимое бутылок от нежелательного фотохим-го воздействия. Поэтому окраску бутылочного стекла иногда специально усиливают.Одним из важнейших св-в стекла является прозрачность . Однако в ряде случаев стеклу специально придают непрозрачность путем его «глушения». В-ва, способствующие помутнению стекла, называют глушителями. Глушение происходит вследствие распределения по всей массе стекла мельчайших кристаллических частиц. Они представляют нерастворившиеся частицы глушителя или частицы, выделившиеся из жидкой массы при охлаждении стекла. В настоящее время для этой цели применяют криолит Na 3 , плавиковый шпат CaF 2 и другие фторидные соединения. Сильно заглушенное стекло (белого цвета) называют молочным. Для его изготовления чаще всего используют криолит. Молочное стекло используют главным образом для изготовления осветительной арматуры.