Формула силы лоренца в общем виде. Т. Применения силы Лоренца

Действие, оказываемое магнитным полем на движущиеся заряженные частицы, очень широко используют в технике.

Например, отклонение электронного пучка в кинескопах телевизоров осуществляют с помощью магнитного поля, которое создают специальными катушками. В ряде электронных приборов магнитное поле используется для фокусировки пучков заряженных частиц.

В созданных в настоящее время экспериментальных установках для осуществления управляемой термоядерной реакции действие магнитного поля на плазму используют для скручивания ее в шнур, не касающийся стенок рабочей камеры. Движение заряженных частиц по окружности в однородном магнитном поле и независимость периода такого движения от скорости частицы используют в циклических ускорителях заряженных частиц - циклотронах.

Действие силы Лоренца используют и в приборах, называемых масс-спектрографами , которые предназначены для разделения заряженных частиц по их удельным зарядам.

Схема простейшего масс-спектрографа показана на рисунке 1.

В камере 1, из которой откачан воздух, находится источник ионов 3. Камера помещена в однородное магнитное поле, в каждой точке которого индукция \(~\vec B\) перпендикулярна плоскости чертежа и направлена к нам (на рисунке 1 это поле обозначено кружочками). Между электродами А ч В приложено ускоряющее напряжение, под действием которого ионы, вылетающие из источника, разгоняются и с некоторой скоростью попадают в магнитное поле перпендикулярно линиям индукции. Двигаясь в магнитном поле по дуге окружности, ионы попадают на фотопластинку 2, что позволяет определить радиус R этой дуги. Зная индукцию магнитного поля В и скорость υ ионов, по формуле

\(~\frac q m = \frac {v}{RB}\)

можно определить удельный заряд ионов. А если заряд иона известен, можно вычислить его массу.

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - C. 328.

Наряду с силой Ампера, кулоновского взаимодействия, электромагнитными полями в физике часто встречается понятие сила Лоренца. Это явление является одним из основополагающих в электротехнике и электронике, на ряду с , и прочими. Она воздействует на заряды, которые двигаются в магнитном поле. В этой статье мы кратко и понятно рассмотрим, что такое сила Лоренца и где она применяется.

Определение

Когда электроны движутся по проводнику – вокруг него возникает магнитное поле. В то же время, если поместить проводник в поперечное магнитное поле и двигать его – возникнет ЭДС электромагнитной индукции. Если через проводник, который находится в магнитном поле, протекает ток – на него действует сила Ампера.

Её величина зависит от протекающего тока, длины проводника, величины вектора магнитной индукции и синуса угла между линиями магнитного поля и проводником. Она вычисляются по формуле:

Рассматриваемая сила отчасти похожа на ту, что рассмотрена выше, но действует не на проводник, а на движущуюся заряженную частицу в магнитном поле. Формула имеет вид:

Важно! Сила Лоренца (Fл) действует на электрон, движущийся в магнитном поле, а на проводник – Ампера.

Из двух формул видно, что и в первом и во втором случае, чем ближе синус угла aльфа к 90 градусам, тем большее воздействие оказывает на проводник или заряд Fа или Fл соответственно.

Итак, сила Лоренца характеризует не изменение величины скорости, а то, какое происходит воздействие со стороны магнитного поля на заряженный электрон или положительный ион. При воздействии на них Fл не совершает работы. Соответственно изменяется именно направление скорости движения заряженной частицы, а не её величина.

Что касается единицы измерения силы Лоренца, как и в случае с другими силами в физике используется такая величина как Ньютон. Её составляющие:

Как направлена сила Лоренца

Чтобы определить направление силы Лоренца, как и с силой Ампера, работает правило левой руки. Это значит, чтобы понять, куда направлено значение Fл нужно раскрыть ладонь левой руки так, чтобы в руку входили линии магнитной индукции, а вытянутые четыре пальца указывали направление вектора скорости. Тогда большой палец, отогнутый под прямым углом к ладони, указывает направление силы Лоренца. На картинке ниже вы видите, как определить направление.

Внимание! Направление Лоренцового действия перпендикулярно движению частицы и линиям магнитной индукции.

При этом, если быть точнее, для положительно и отрицательно заряженных частиц имеет значение направление четырёх развернутых пальцев. Выше описанное правило левой руки сформулировано для положительной частицы. Если она заряжена отрицательно, то линии магнитной индукции должны быть направлены не в раскрытую ладонь, а в её тыльную сторону, а направление вектора Fл будет противоположным.

Теперь мы расскажем простыми словами, что даёт нам это явление и какое реальное воздействие она оказывает на заряды. Допустим, что электрон движется в плоскости, перпендикулярной направлению линий магнитной индукции. Мы уже упомянули, что Fл не воздействует на скорость, а лишь меняет направление движения частиц. Тогда сила Лоренца будет оказывать центростремительное воздействие. Это отражено на рисунке ниже.

Применение

Из всех сфер, где используется сила Лоренца, одной из масштабнейших является движение частиц в магнитном поле земли. Если рассмотреть нашу планету как большой магнит, то частицы, которые находятся около северного магнитного полюсов, совершают ускоренное движение по спирали. В результате этого происходит их столкновение с атомами из верхних слоев атмосферы, и мы видим северное сияние.

Тем не менее, есть и другие случаи, где применяется это явление. Например:

  • Электронно-лучевые трубки. В их электромагнитных отклоняющих системах. ЭЛТ применялись больше чем 50 лет подряд в различных устройствах, начиная от простейшего осциллографа до телевизоров разных форм и размеров. Любопытно, что в вопросах цветопередачи и работы с графикой некоторые до сих пор используют ЭЛТ мониторы.
  • Электрические машины – генераторы и двигатели. Хотя здесь скорее действует сила Ампера. Но эти величины можно рассматривать как смежные. Однако это сложные устройства при работе которых наблюдается воздействие многих физических явлений.
  • В ускорителях заряженных частиц для того, чтобы задавать им орбиты и направления.

Заключение

Подведем итоги и обозначим четыре основных тезиса этой статьи простым языком:

  1. Сила Лоренца действует на заряженные частицы, которые движутся в магнитном поле. Это вытекает из основной формулы.
  2. Она прямо пропорциональна скорости заряженной частицы и магнитной индукции.
  3. Не влияет на скорость частицы.
  4. Влияет на направление частицы.

Её роль достаточно велика в «электрических» сферах. Специалист не должен упускать из вида основные теоретические сведения об основополагающих физических законах. Эти знания пригодятся, как и тем, кто занимается научной работой, проектированием и просто для общего развития.

Теперь вы знаете, что такое сила Лоренца, чему она равна и как действует на заряженные частицы. Если возникли вопросы, задавайте их в комментариях под статьей!

Материалы

РЕФЕРАТ

По предмету «Физика»
Тема: «Применение силы Лоренца»

Выполнил: Студент группы Т-10915Логунова М.В.

ПреподавательВоронцов Б.С.

Курган 2016

Введение. 3

1. Использование силы Лоренца. 4

.. 4

1. 2 Масс-спектрометрия . 6

1. 3 МГД генератор . 7

1. 4 Циклотрон . 8

Заключение. 11

Список использованной литературы.. 13


Введение

Сила Лоренца - сила, с которой электромагнитное поле согласно классической (неквантовой) электродинамике действует наточечную заряженную частицу. Иногда силой Лоренца называют силу, действующую на движущийся со скоростью υ заряд q лишь со стороны магнитного поля, нередко же полную силу - со стороны электромагнитного поля вообще, иначе говоря, со стороны электрического E и магнитного B полей.

В Международной системе единиц (СИ) выражается как:

F Л = q υ B sin α

Названа в честь голландского физика Хендрика Лоренца, который вывел выражение для этой силы в 1892 году. За три года до Лоренца правильное выражение было найдено О. Хевисайдом.

Макроскопическим проявлением силы Лоренца является сила Ампера.


Использование силы Лоренца

Действие, оказываемое магнитным полем на движущиеся заряженные частицы, очень широко используют в технике.

Основным применением силы Лоренца (точнее, её частного случая - силы Ампера) являются электрические машины (электродвигатели и генераторы). Сила Лоренца широко используется в электронных приборах для воздействия на заряженные частицы (электроны и иногда ионы), например, в телевизионных электронно-лучевых трубках , в масс-спектрометрии и МГД-генераторах .

Также в созданных в настоящее время экспериментальных установках для осуществления управляемой термоядерной реакции действие магнитного поля на плазму используют для скручивания ее в шнур, не касающийся стенок рабочей камеры. Движение заряженных частиц по окружности в однородном магнитном поле и независимость периода такого движения от скорости частицы используют в циклических ускорителях заряженных частиц - циклотронах.

1. 1. Электронно-лучевые приборы

Электронно-лучевые приборы (ЭЛП) - класс вакуумных электронных приборов, в которых используется поток электронов, сконцентрированный в форме одиночного луча или пучка лучей, которые управляются как по интенсивности (току), так и по положению в пространстве, и взаимодействуют с неподвижной пространственной мишенью (экраном) прибора. Основная сфера применения ЭЛП - преобразование оптической информации в электрические сигналы и обратное преобразование электрического сигнала в оптический - например, в видимое телевизионное изображение.

В класс электронно-лучевых приборов не включаются рентгеновские трубки, фотоэлементы, фотоумножители, газоразрядные приборы (декатроны) и приёмно-усилительные электронные лампы (лучевые тетроды, электровакуумные индикаторы, лампы со вторичной эмиссией и тому подобное) с лучевой формой токов.

Электронно-лучевой прибор состоит, как минимум, из трёх основных частей:

· Электронный прожектор (пушка) формирует электронный луч (или пучок лучей, например, три луча в цветном кинескопе) и управляет его интенсивностью (током);

· Отклоняющая система управляет пространственным положением луча (отклонением его от оси прожектора);

· Мишень (экран) приёмного ЭЛП преобразует энергию луча в световой поток видимого изображения; мишень передающего или запоминающего ЭЛП накапливает пространственный потенциальный рельеф, считываемый сканирующим электронным лучом

Рис. 1 Устройство ЭЛТ

Общие принципы устройства.

В баллоне ЭЛТ создан глубокий вакуум. Для создания электронного луча применяется устройство, именуемое электронной пушкой. Катод, нагреваемый нитью накала, испускает электроны. Изменением напряжения на управляющем электроде (модуляторе) можно изменять интенсивность электронного луча и, соответственно, яркость изображения. Покинув пушку, электроны ускоряются анодом. Далее луч проходит через отклоняющую систему, которая может менять направление луча. В телевизионных ЭЛТ применяется магнитная отклоняющая система как обеспечивающая большие углы отклонения. В осциллографических ЭЛТ применяется электростатическая отклоняющая система как обеспечивающая большее быстродействие. Электронный луч попадает в экран, покрытый люминофором. От бомбардировки электронами люминофор светится и быстро перемещающееся пятно переменной яркости создаёт на экране изображение.

1. 2 Масс-спектрометрия

Рис. 2

Действие силы Лоренца используют и в приборах, называемых масс-спектрографами, которые предназначены для разделения заряженных частиц по их удельным зарядам.

Масс-спектрометрия (масс-спектроскопия, масс-спектрография, масс-спектральный анализ, масс-спектрометрический анализ) - метод исследования вещества, основанный на определении отношения массы к заряду ионов, образующихся приионизации представляющих интерес компонентов пробы. Один из мощнейших способов качественной идентификации веществ, допускающий также и количественное определение. Можно сказать, что масс-спектрометрия - это «взвешивание» молекул, находящихся в пробе.

Схема простейшего масс-спектрографа показана на рисунке 2.

В камере 1, из которой откачан воздух, находится источник ионов 3. Камера помещена в однородное магнитное поле, в каждой точке которого индукция B⃗ B→перпендикулярна плоскости чертежа и направлена к нам (на рисунке 1 это поле обозначено кружочками). Между электродами А и В приложено ускоряющее напряжение, под действием которого ионы, вылетающие из источника, разгоняются и с некоторой скоростью попадают в магнитное поле перпендикулярно линиям индукции. Двигаясь в магнитном поле по дуге окружности, ионы попадают на фотопластинку 2, что позволяет определить радиус R этой дуги. Зная индукцию магнитного поля В и скорость υ ионов, по формуле

можно определить удельный заряд ионов. А если заряд иона известен, можно вычислить его массу.

История масс-спектрометрии ведётся с основополагающих опытов Дж. Дж. Томсона в начале XX века. Окончание «-метрия» в названии метода появилось после повсеместного перехода от детектирования заряженных частиц при помощи фотопластинок к электрическим измерениям ионных токов.

Особенно широкое применение масс-спектрометрия находит в анализе органических веществ, поскольку обеспечивает уверенную идентификацию как относительно простых, так и сложных молекул. Единственное общее требование - чтобы молекула поддавалась ионизации. Однако к настоящему времени придумано

столько способов ионизации компонентов пробы, что масс-спектрометрию можно считать практически всеохватным методом.

1. 3 МГД генератор

Магнитогидродинамический генератор, МГД-генератор - энергетическая установка, в которой энергия рабочего тела (жидкой или газообразной электропроводящей среды), движущегося в магнитном поле, преобразуется непосредственно в электрическую энергию.

Принцип работы МГД-генератора, как и обычного машинного генератора, основан на явлении электромагнитной индукции, то есть - на возникновении тока в проводнике, пересекающем силовые линии магнитного поля. В отличие от машинных генераторов проводником в МГД-генераторе является само рабочее тело.

Рабочее тело движется поперёк магнитного поля, и под действием магнитного поля возникают противоположно направленные потоки носителей зарядов противоположных знаков.

На заряженную частицу действует сила Лоренца.

Рабочим телом МГД-генератора могут служить следующие среды:

· электролиты;

· жидкие металлы;

· плазма (ионизированный газ).

Первые МГД-генераторы использовали в качестве рабочего тела электропроводные жидкости (электролиты). В настоящее время применяют плазму, в которой носителями зарядов являются в основном свободные электроны и положительные ионы. Под действием магнитного поля носители зарядов отклоняются от траектории, по которой газ двигался бы в отсутствие поля. При этом в сильном магнитном поле может возникать поле Холла (см. Эффект Холла) - электрическое поле, образуемое в результате соударений и смещений заряженных частиц в плоскости, перпендикулярной магнитному полю.

1. 4 Циклотрон

Циклотрон - резонансный циклический ускоритель нерелятивистских тяжёлых заряженных частиц (протонов, ионов), в котором частицы двигаются в постоянном и однородном магнитном поле, а для их ускорения используется высокочастотное электрическое поле неизменной частоты.

Схема устройства циклотрона показана на рис.3. Тяжелые заряженные частицы (протоны, ионы) попадают в камеру из инжектора вблизи центра камеры и ускоряются переменным полем фиксированной частоты, приложенным к ускоряющим электродам (их два и они называются дуантами). Частицы с зарядом Ze и массой m движутся в постоянном магнитном поле напряженностью B, направленном перпендикулярно плоскости движения частиц, по раскручивающейся спирали. Радиус R траектории частицы, имеющей скорость v, определяется формулой

где γ = -1/2 – релятивистский фактор.

В циклотроне для нерелятивистской (γ ≈ 1) частицы в постоянном и однородном магнитном поле радиус орбиты пропорционален скорости (1), а частотаобращения нерелятивистской частицы (циклотронная частота не зависит от энергии частицы

E = mv 2 /2 = (Ze) 2 B 2 R 2 /(2m) (3)

В зазоре между дуантами частицы ускоряются импульсным электрическим полем (внутри полых металлических дуантов электрического поля нет). В результате энергия и радиус орбиты возрастают. Повторяя ускорение электрическим полем на каждом обороте, энергию и радиус орбиты доводят до максимально допустимых значений. При этом частицы приобретают скорость v = ZeBR/m и соответствующую ей энергию:

На последнем витке спирали включается отклоняющее электрическое поле, выводящее пучок наружу. Постоянство магнитного поля и частоты ускоряющего поля делают возможным непрерывный режим ускорения. Пока одни частицы двигаются по внешним виткам спирали, другие находятся в середине пути, а третьи только начинают движение.

Недостатком циклотрона является ограничение существенно нерелятивистскими энергиями частиц, так как даже не очень большие релятивистские поправки (отклонения γ от единицы) нарушают синхронность ускорения на разных витках и частицы с существенно возросшими энергиями уже не успевают оказаться в зазоре между дуантами в нужной для ускорения фазе электрического поля. В обычных циклотронах протоны можно ускорять до 20-25 МэВ.

Для ускорения тяжёлых частиц в режиме раскручивающейся спирали до энергий в десятки раз больших (вплоть до 1000 МэВ) используют модификацию циклотрона, называемую изохронным (релятивистским) циклотроном, а также фазотрон. В изохронных циклотронах релятивистские эффекты компенсируются радиальным возрастанием магнитного поля.


Заключение

Скрытый текст

Письменное заключение (самое основное по всем подпунктам первого раздела – принципы действия, определения)

Список использованной литературы

1. Википедия [Электронный ресурс]: Сила Лоренца. URL: https://ru.wikipedia.org/wiki/Сила_Лоренца

2. Википедия [Электронный ресурс]: Магнитогидродинамический генератор. URL: https://ru.wikipedia.org/wiki/ Магнитогидродинамический_генератор

3. Википедия [Электронный ресурс]: Электронно-лучевые приборы. URL: https://ru.wikipedia.org/wiki/ Электронно-лучевые_приборы

4. Википедия [Электронный ресурс]: Масс-спектрометрия. URL: https://ru.wikipedia.org/wiki/Масс-спектрометрия

5. Ядерная физика в Интернете [Электронный ресурс]: Циклотрон. URL: http://nuclphys.sinp.msu.ru/experiment/accelerators/ciclotron.htm

6. Электронный учебник физики [Электронный ресурс]: Т. Применения силы Лоренца// URL: http://www.physbook.ru/index.php/ Т._Применения_силы_Лоренца

7. Академик [Электронный ресурс]: Магнитогидродинамический генератор// URL: http://dic.academic.ru/dic.nsf/enc_physics/МАГНИТОГИДРОДИНАМИЧЕСКИЙ

©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-03-31

Сила, действующая со стороны магнитного поля на движущуюся электрически заряженную частицу.

где q - заряд частицы;

V - скорость заряда;

a - угол между вектором скорости заряда и вектором магнитной индукции .

Направление силы Лоренца определяется по правилу левой руки:

Если поставить левую руку так, чтобы перпендикулярная скорости составляющая вектора индукции входила в ладонь, а четыре пальца были бы расположены по направлению скорости движения положительного заряда (или против направления скорости отрицательного заряда), то отогнутый большой палец укажет направление силы Лоренца:

.

Так как сила Лоренца всегда перпендикулярна скорости заряда, то она не совершает работы (т.е. не изменяет величину скорости заряда и его кинетическую энергию).

Если заряженная частица движется параллельно силовым линиям магнитного поля, то Fл = 0 , и заряд в магнитном поле движетсяравномерно и прямолинейно.

Если заряженная частица движется перпендикулярно силовым линиям магнитного поля, то сила Лоренца является центростремительной:

и создает центростремительное ускорение равное:

В этом случае частица движется по окружности.


.

Согласно второму закону Ньютона : сила Лоренца равнв произведению массы частицы на центростремительное ускорение:

тогда радиус окружности:

а период обращения заряда в магнитном поле:

Так как электрический ток представляет собой упорядоченное движение зарядов, то действие магнитного поля на проводник с током есть результат его действия на отдельные движущиеся заряды. Если внести проводник с током в магнитное поле (фиг.96,а), то мы увидим, что в результате сложения магнитных полей магнита и проводника произойдет усиление результирующего магнитного поля с одной стороны проводника (на чертеже сверху) и ослабление магнитного поля с другой стороны проводника (на чертеже снизу). В результате действия двух магнитных полей произойдет искривление магнитных линий и они, стремясь сократиться, будут выталкивать проводник вниз (фиг. 96, б).

Направление силы, действующей на проводник с током в магнитном поле, можно определить по «правилу левой руки». Если левую руку расположить в магнитном поле так, чтобы магнитные линии, выходящие из северного полюса, как бы входили в ладонь, а четыре вытянутых пальца совпадали с направлением тока в проводнике, то большой отогнутый палец руки покажет направление действия силы. Сила Ампера , действующая на элемент длины проводника, зависит: от величины магнитной индукции В, величины тока в проводнике I, от элемента длины проводника и от синуса угла а между направлением элемента длины проводника и направлением магнитного поля.


Эта зависимость может быть выражена формулой:

Для прямолинейного проводника конечной длины, помещенного перпендикулярно к направлению равномерного магнитного поля, сила, действующая на проводник, будет равна:

Из последней формулы определим размерность магнитной индукции.

Так как размерность силы:

т. е. размерность индукции такая же, какая была получена нами из закона Био и Савара.

Тесла (единица магнитной индукции)

Тесла, единица магнитной индукции Международной системы единиц, равная магнитной индукции, при которой магнитный поток сквозь поперечное сечение площадью 1 м 2 равен 1 веберу. Названа по имени Н. Тесла . Обозначения: русское тл, международное Т. 1 тл = 104 гс (гаусс ).

Магни?тный моме?нт , магни?тный дипо?льный моме?нт — основная величина, характеризующая магнитные свойства вещества. Магнитный момент измеряется в А⋅м 2 или Дж/Тл (СИ), либо эрг/Гс (СГС), 1 эрг/Гс = 10 -3 Дж/Тл. Специфической единицей элементарного магнитного момента является магнетон Бора . В случае плоского контура с электрическим током магнитный момент вычисляется как

где — сила тока в контуре, — площадь контура, — единичный вектор нормали к плоскости контура. Направление магнитного момента обычно находится по правилу буравчика: если вращать ручку буравчика в направлении тока, то направление магнитного момента будет совпадать с направлением поступательного движения буравчика.

Для произвольного замкнутого контура магнитный момент находится из:

,

где — радиус-вектор, проведенный из начала координат до элемента длины контура

В общем случае произвольного распределения токов в среде:

,

где — плотность тока в элементе объёма .

Итак, на контур с током в магнитном поле действует вращающий момент. Контур ориентируется в данной точке поля только одним способом. Примем положительное направление нормали за направление магнитного поля в данной точке. Вращающий момент прямо пропорционален величине тока I , площади контура S и синусу угла между направлением магнитного поля и нормали .

здесь М - вращающий момент , или момент силы , - магнитный момент контура (аналогично - электрический момент диполя).

В неоднородном поле () формула справедлива, если размер контура достаточно мал (тогда в пределах контура поле можно считать приближенно однородным). Следовательно, контур с током по-прежнему стремится развернуться так, чтобы его магнитный момент был направлен вдоль линий вектора .

Но, кроме того, на контур действует результирующая сила (в случае однородного поля и . Эта сила действует на контур с током или на постоянный магнит с моментом и втягивает их в область более сильного магнитного поля.
Работа по перемещению контура с током в магнитном поле.

Нетрудно доказать, что работа по перемещению контура с током в магнитном поле равна , где и - магнитные потоки через площадь контура в конечном и начальном положениях. Эта формула справедлива, если ток в контуре постоянен , т.е. при перемещении контура не учитывается явление электромагнитной индукции.

Формула справедлива и для больших контуров в сильно неоднородном магнитном поле (при условии I= const).

Наконец, если контур с током не смещать, а изменять магнитное поле, т.е. изменять магнитный поток через поверхность, охватываемую контуром, от значения до то для этого надо совершить ту же работу . Эта работа называется работой изменения магнитного потока, связанного с контуром. Потоком вектора магнитной индукции (магнитным потоком) через площадку dS называется скалярная физическая величина, которая равна

где B n =Вcosα - проекция вектора В на направление нормали к площадке dS (α — угол между векторами n и В ), dS = dSn — вектор, у которого модуль равен dS, а направление его совпадает с направлением нормали n к площадке. Поток вектора В может быть как положительным, так и отрицательным в зависимости от знака cosα (задается выбором положительного направления нормали n ). Поток вектора В обычно связывают с контуром, по которому течет ток. В этом случае положительное направление нормали к контуру нами задавалось: оно связывается с током правилом правого винта. Значит, магнитный поток, который создается контуром, через поверхность, ограниченную им самим, всегда положителен.

Поток вектора магнитной индукции Ф B через произвольную заданную поверхность S равен

(2)

Для однородного поля и плоской поверхности, которая расположена перпендикулярно вектору В , B n =B=const и

Из этой формулы задается единица магнитного потока вебер (Вб): 1 Вб — магнитный поток, который проходит сквозь плоскую поверхность площадью 1 м 2 , который расположен перпендикулярно однородному магнитному полю и индукция которого равна 1 Тл (1 Вб=1 Тл.м 2).

Теорема Гаусса для поля В : поток вектора магнитной индукции сквозь любую замкнутую поверхность равен нулю:

(3)

Эта теорема является отражением факта, что магнитные заряды отсутствуют , вследствие чего линии магнитной индукции не имеют ни начала, ни конца и являются замкнутыми.

Следовательно, для потоков векторов В и Е сквозь замкнутую поверхность в вихревом и потенциальном полях получаются различные формулы.

В качестве примера найдем поток вектора В сквозь соленоид. Магнитная индукция однородного поля внутри соленоида с сердечником с магнитной проницаемостью μ, равна

Магнитный поток сквозь один виток соленоида площадью S равен

а полный магнитный поток, который сцеплен со всеми витками соленоида и называемый потокосцеплением ,

Возникновение силы, действующей на электрический заряд, движущийся во внешнем электромагнитном поле

Анимация

Описание

Силой Лоренца называетсясила, действующая на заряженную частицу, движущуюся во внешнем электромагнитном поле.

Формула для силы Лоренца (F ) была впервые получена путем обобщения опытных фактов Х.А. Лоренцем в 1892 г. и представлена в работе «Электромагнитная теория Максвелла и ее приложение к движущимся телам». Она имеет вид:

F = qE + q, (1)

где q - заряженная частица;

Е - напряженность электрического поля;

B - вектор магнитной индукции, не зависящий от величины заряда и скорости его движения;

V - вектор скорости заряженной частицы относительно системы координат, в которой вычисляются величины F и B .

Первый член в правой части уравнения (1) - сила, действующая на заряженную частицу в электрическом поле F Е =qE, второй член - сила, действующая в магнитном поле:

F м = q. (2)

Формула (1) универсальна. Она справедлива как для постоянных, так и для переменных силовых полей, а также для любых значений скорости заряженной частицы. Она является важным соотношением электродинамики, так как позволяет связать уравнения электромагнитного поля с уравнениями движения заряженных частиц.

В нерелятивистском приближении сила F , как и любая другая сила, не зависит от выбора инерциальной системы отсчета. Вместе с тем магнитная составляющая силы Лоренца F м изменяется при переходе от одной системы отсчета к другой из-за изменения скорости, поэтому будет изменяться и электрическая составляющая F Е . В связи с этим разделение силы F на магнитную и электрическую имеет смысл только с указанием системы отсчета.

В скалярной форме выражение (2) имеет вид:

Fм = qVBsina , (3)

где a - угол между векторами скорости и магнитной индукции.

Таким образом магнитная часть силы Лоренца максимальна, если направление движения частицы перпендикулярно магнитному полю (a =p /2), и равна нулю, если частица движется вдоль направления поля В (a =0).

Магнитная сила F м пропорциональна векторному произведению , т.е. она перпендикулярна вектору скорости заряженной частицы и поэтому работы над зарядом не совершает. Это означает, что в постоянном магнитном поле под действием магнитной силы искривляется лишь траектория движущейся заряженной частицы, но энергия ее всегда остается неизменной , как бы частица ни двигалась.

Направление магнитной силы для положительного заряда определяется согласно векторному произведению (рис. 1).

Направление силы, действующей на положительный заряд в магнитном поле

Рис. 1

Для отрицательного заряда (электрона) магнитная сила направлена в противоположную сторону (рис. 2).

Направление силы Лоренца, действующей на электрон в магнитном поле

Рис. 2

Магнитное поле В направлено к читателю перпендикулярно рисунку. Электрическое поле отсутствует.

Если магнитное поле однородно и направлено перпендикулярно скорости, заряд массой m движется по окружности. Радиус окружности R определяется по формуле:

где - удельный заряд частицы.

Период обращения частицы (время одного оборота) не зависит от скорости, если скорость частицы много меньше скорости света в вакууме. В противном случае период обращения частицы возрастает в связи с возрастанием релятивистской массы.

В случае нерелятивистской частицы:

где - удельный заряд частицы.

В вакууме в однородном магнитном поле, если вектор скорости не перпендикулярен вектору магнитной индукции (a№p /2), заряженная частица под действием силы Лоренца (ее магнитной части) движется по винтовой линии с постоянной по величине скоростью V . При этом ее движение складывается из равномерного прямолинейного движения вдоль направления магнитного поля В со скоростью и равномерного вращательного движения в плоскости перпендикулярной полю В со скоростью (рис. 2).

Проекция траектории движения частицы на плоскость перпендикулярную В есть окружность радиуса:

период обращения частицы:

Расстояние h , которое проходит частица за время Т вдоль магнитного поля В (шаг винтовой траектории), определяется по формуле:

h = Vcos a T . (6)

Ось винтовой линии совпадает с направлением поля В , центр окружности перемещается вдоль силовой линии поля (рис. 3).

Движение заряженной частицы, влетевшей под углом a№p /2 в магнитное поле В

Рис. 3

Электрическое поле отсутствует.

Если электрическое поле E № 0, движение носит более сложный характер.

В частном случае, если векторы E иB параллельны, в процессе движения изменяется составляющая скорости V 11 , параллельная магнитному полю, вследствие чего меняется шаг винтовой траектории (6).

В том случае, если E иB не параллельны, происходит перемещение центра вращения частицы, называемое дрейфом, перпендикулярно полю В . Направление дрейфа определяется векторным произведением и не зависит от знака заряда.

Воздействие магнитного поля на движущиеся заряженные частицы приводят к перераспределению тока по сечению проводника, что находит свое проявление в термомагнитных и гальваномагнитных явлениях.

Эффект открыт нидерландским физиком Х.А. Лоренцем (1853-1928).

Временные характеристики

Время инициации (log to от -15 до -15);

Время существования (log tc от 15 до 15);

Время деградации (log td от -15 до -15);

Время оптимального проявления (log tk от -12 до 3).

Диаграмма:

Технические реализации эффекта

Техническая реализация действия силы Лоренца

Техническая реализация эксперимента по прямому наблюдению действия силы Лоренца на движущийся заряд как правило довольно сложна, так как соответствующие заряженные частицы имеют молекулярный характерный размер. Поэтому наблюдение их траектории в магнитном поле требует вакуумирования рабочего объема во избежание столкновений, искажающих траекторию. Так что специально такие демонстрационные установки как правило не создаются. Легче всего для демонстрации использовать стандартный секторный магнитный масс-анализатор Ниера, см. Эффект 409005, - действие которого целиком основано на силе Лоренца.

Применение эффекта

Типичное испольтзование в технике - датчик Холла, широко используемый в измерительной технике.

Пластинка из металла или полупроводника помещается в магнитное поле В . При пропускании через нее электрического тока плотности j в направлении перпендикулярном магнитному полю в пластине возникает поперечное электрическое поле, напряженность которого Е перпендикулярна обоим векторамj и В . По данным измерений находят В .

Объясняется этот эффект действием силы Лоренца на движущийся заряд.

Гальваномагнитные магнитометры. Масс-спектрометры. Ускорители заряженных частиц. Магнитогидродинамические генераторы.

Литература

1. Сивухин Д.В. Общий курс физики.- М.: Наука, 1977.- Т.3. Электричество.

2. Физический энциклопедический словарь.- М., 1983.

3. Детлаф А.А., Яворский Б.М. Курс физики.- М.: Высшая школа, 1989.

Ключевые слова

  • электрический заряд
  • магнитная индукция
  • магнитное поле
  • напряженность электрического поля
  • сила Лоренца
  • скорость частицы
  • радиус окружности
  • период обращения
  • шаг винтовой траектории
  • электрон
  • протон
  • позитрон

Разделы естественных наук: