Методы как инструменты изучения бактерий их основных свойств. Методы контрастирования бактерий, обнаружения подвижности и спорообразования Подвижность бактерий и методы ее изучения

05.02.2022 Освещение

Поступательное движение бактерий за счет жгутиков можно наблюдать во влажных препаратах, применяя в большинстве случаев светлопольный микроскоп. Наиболее эффективно наблюдение за подвижностью в темнопольном микроскопе.

На основании количества и характера расположения жгутиков на поверхности бактериальной клетки отнесите ее к одному из следующих типов: монотрихи (имеют только один жгутик, прикрепленный к одному полюсу клетки), лофотрихи (на одном из своих полюсов имеют пучок из 2-50 жгутиков), амфитрихи (пучки жгутиков имеются на каждом из полюсов бактериальной клетки), перитрихи (многочисленные жгутики расположены по всей поверхности клетки).

Чтобы убедиться, что жгутики действительно присущи данным микроорганизмам, а также определить их расположение (полярное, перитрихиальное, латеральное), требуются методы с применением окрашивания.

Для окрашивания жгутиков предложено несколько методов, общим этапом для которых является протравливание препарата (обычно растворами таннина, KAl(SO 4) 2 , HgCl 2) и последующая окраска (чаще карболовым раствором фуксина). В результате этого на жгутиках происходит осаждение красителя, благодаря чему одновременно достигается как увеличение их толщины, так и уменьшение прозрачности. Одним из предложенных методов окрашивания жгутиков является метод Лейфзона .

Методика окрашивания.

1 Выращенные на скошенном агаре бактерии, осторожно ресуспендируют в пептонной воде. Бактериальной петлей суспензию наносят на предметное стекло и высушивают на воздухе.

2 Восковым стеклографом очерчивают вокруг бактериальной пленки прямоугольник.

3 Наносят на предметное стекло 1 мл раствора красителя таким образом, чтобы он не вытекал за пределы восковой линии. Оставляют краситель на определенное время (до 1 часа). В состав красителя входят 1,5 % хлористого натрия, 3 % таннина (дубильной кислоты) и 0,03 % фуксина.

4 Как только на поверхности красителя образуется золотистая пленка, а по всему мазку выпадет осадок, краситель удаляют под струей воды, а препарат высушивают на воздухе.

5 Препарат микроскопируют с иммерсионной системой. Клетки бактерий окрашиваются в красный цвет, жгутики принимают вид толстых нитей, отходящих от клетки.

Подвижность бактерий может быть выявлена с использованием техники посева в столбик агара. При этом культуру бактерий засевают уколом в столбик 0,3 % питательной среды в пробирке. Пробирки помещают в термостат для инкубирования. Результаты учитывают через 24 – 48 часов. Подвижные бактерии растут по всей толще агара, вызывая диффузное помутнение среды, неподвижные – только по линии укола.

Для обывателя, не посвященного в таинства микробиологических исследований, весь процесс изучения микробов представляется сложным, специфическим и требовательным к качеству и количеству специального оборудования. Такое представление соответствует действительности только отчасти, поскольку вся сложность и специфичность построена на определенной микробиологической азбуке. Эта азбука состоит из описания методов изучения бактерий и других микроорганизмов, а также из порядка построения выводов по результатам проведенных исследований.

К общим положениям при изучении методов исследования микробов можно отнести порядок выбора того инструмента, которым будут производиться лабораторные анализы бактериальной клетки, и последовательность интерпретации тех выводов, на основании которых будут фиксироваться окончательные заключения по изучаемому микроорганизму.

Выбор метода изучения в первую очередь зависит от предмета исследований:

  1. Если планируется изучить строение и морфологию клетки, ее ультраструктуру (составные структуры и компоненты) и установить наличие подвижности, используется два вида микроскопии: микроскопия бактериальных клеток в живом состоянии и в окрашенном виде.
  2. Изучение метаболизма и ферментативной активности микроорганизмов производится путем посева выращенных колоний на дифференциально-диагностические питательные среды.
  3. Определение чувствительности к антибиотикам производится методом диффузии в агар.
  4. Изучение генетики микроорганизмов (их наследственности и изменчивости) осуществляется путем проведения перераспределительного теста, методом реплик и ряда других специализированных исследований.

Каждый из указанных методов имеет свои вариации исполнения, которые зависят от особенностей условия проведения анализа и от изучаемого материала.

Кроме того, есть масса узкоспециальных микробиологических экспериментов, которые позволяют определить те или иные особенности структуры или свойств бактериальной клетки.

Изучение морфологии и подвижности

Морфологическое исследование в основном направлено на идентификацию бактерий.

Изучение форм и выявление подвижности проводится методом микроскопирования живых бактерий.

Основные структуры микроорганизма анализируются в препаратах раздавленной или висячей капли. Это способ нанесения бульонного раствора с бактериальной культурой на предметное стекло.

Этот метод определения строения бактерии может проводиться путем наблюдений в «темном поле зрения».

Принцип эксперимента заключается в том, что исследователем создаются такие условия, когда микробные тела не освещаются напрямую, а отражают лучи света, что позволяет рассмотреть их основные структуры более подробно и в нативной (естественной) среде.

Анализ с использованием различных способов окрашивания предполагает, что окрашиваться будут убитые микробные клетки, поскольку они лучше окрашиваются.

Для проведения анализа необходимо осуществить несколько манипуляций:

  1. Приготовить мазок исследуемого материала. В эту стадию входит работа с исследуемым материалом (кровь, мокрота и т.д.).
  2. Высушивание и фиксация мазка химическим или физическим способом.
  3. Выбор вида окрашивания (сложный или простой).

Простым способом бактериальные клетки окрашивают в большинстве случаев только для того, чтобы выявить в исследуемом материале присутствие микроорганизмов. Этот способ представляет собой окрашивание мазка метиленовым синим. Данный краситель окрашивает фон мазка на порядок слабее, чем клетки самих микроорганизмов.

Обнаружение основных структур бактериальной клетки осуществляется с использованием сложного окрашивания:

  • метод Грама (определение свойств клеточной стенки);
  • окраска на выявление спор;
  • окраска по Романовскому-Гимзе окрашивает в разные цвета основные структуры клетки;
  • выявление капсул по способу Гинса;
  • выявление зерен волютина (внутриплазматические гранулы, состоящие из неорганических полифосфатов), их присутствие указывает на наличие возбудителя дифтерии.

Исследование ферментативной активности и метаболизма

Исследование ферментативной активности и метаболизма бактериальных клеток начинается с подбора питательных сред, на которых изучаемые микроорганизмы смогут проявить нужные исследователю свойства.

Для приготовления питательных сред используются:

  • продукты животного происхождения;
  • продукты растительного происхождения;
  • органические и неорганические соединения определенного химического состава.

По своему составу питательная среда должна быть:

  • с подходящим для конкретного вида микроорганизмов уровнем рН (кислотностью);
  • с достаточным уровнем влажности, поскольку для бактерий важно состояние осмотического давления внешней среды;
  • изотоничной и стерильной.

После создания питательной среды осуществляется посев на нее биологического материала и выделение чистой культуры.

После выделения и идентификации чистой культуры изучаются ее биохимические свойства и ферментативная активность.

Для определения ферментативной активности бактериальной клетки выделенную культуру засевают на дифференциально-диагностические питательные среды, которые заранее созданы под выявление того или иного фермента.

  1. Для обнаружения сахаролитической биохимической активности клетки исследуемой культуры засевают в пять пробирок, в которые закладывают разные органические сахара. В зависимости от того, в какой из пробирок будет выявлена биохимическая активность (сработает цветовой индикатор), определяется, какими сахаролитическими свойствами обладает исследуемая бактериальная клетка.
  2. Для определения протеолитической активности чистую бактериальную культуру засевают на мясопептонный желатин. Там, где под действием протеолитического фермента происходит расщепление белков желатина (разжижение), там и фиксируется присутствие протеолитического фермента. Для определения глубины работы протеолитических ферментов при данных анализах проводят исследование на выявление индола и сероводорода (конечных продуктов протеолитического распада).
  3. Установление редуцирующей способности бактерий производится с засеванием лакмусового молока. Присутствие редуктазы проявляется специфическим обесцвечиванием молока.
  4. Выявление каталазы происходит путем фиксации на плотной питательной среде в чашке Петри появления пузырьков газа, который выделяется в результате расщепления перекиси водорода под действием каталазы.

Данные исследования позволяют определить основные свойства тех или иных микробов. Так, присутствие протеолитического или сахаролитического фермента – свидетельство наличия патогенных для человека, животных и растений свойств изучаемого микроорганизма.

Исследование чувствительности к антибиотикам

Исследование чувствительности микроорганизмов к антибиотикам осуществляется по принципу деления бактерий на чувствительных и устойчивых к воздействию антибиотиков.

Изучение этого свойства особенно важно для практической медицины, где постоянно необходимо исследовать инфицированный материал и подбирать антибиотики для лечения.

Ввиду того что микробы умеют быстро приспосабливаться к тому разрушающему воздействию, которое на них оказывают антибиотики, очень важно на начальных стадиях лечения определить, как будет воздействовать запланированный к лечению антибиотик и присутствует ли у исследуемого биологического материала чувствительность к планируемому способу антибактериального воздействия.

  1. Для начала при помощи исследований патогенного материала определяют, какой микроб ведущий в очаге заражения (определение ведется, в том числе, и методом количественного подсчета).
  2. Если установлен ведущий микроорганизм, то его чувствительность определяется путем диффузии в агар с применением бумажных дисков. Специально разработанные и выпускаемые бумажные диски заранее обработаны антибиотиками в нужной концентрации. Чувствительность к определенному антибиотику на бумажном диске определяется по замедленному росту колонии на соответствующих зонах диска и по разному окрашиванию дисков.

Кроме метода с использованием бумажных дисков, также для определения чувствительности бактерий к антибиотикам применяется способ стерильных разведений. Бульонные культуры микробов вносят в разведенные растворы антибиотиков. В процессе изучения микробов на чувствительность к антибиотикам пробирки инкубируют и выдерживают определенное количество времени.

Результаты исследования изучают по таблице чувствительности, где указаны исходные и конечные данные концентрации антибиотиков и биологического материала.

Исследование генетики бактерий

Генетика позволяет определить свойства наследственности и изменчивости конкретного микроорганизма. Изучение этих свойств очень важно, поскольку дает возможность понять механизм тех мутаций в генном коде, которые позволяют бактериям с такой невероятной скоростью и легкостью приспосабливаться к изменяющимся внешним условиям.

Еще одной важной особенностью генетики бактерий является то, что ее принципы справедливы для всего органического мира. Изучив генетику бактерий, можно на молекулярном уровне установить все основные эволюционные законы.

Основной предмет изучения генетики бактерий – мутации (скачкообразное изменение наследственного признака).

Исследование мутаций происходит с использованием бактериофагов (вирусы бактерий, которые разрушают бактериальную клетку).

Вырабатываемая бактериями в результате мутаций устойчивость к фагам фиксируется разными методами:

  • флуктуационный тест;
  • перераспределительный тест;
  • метод реплик и т.д.

Изменение в генетике исследуемой бактерии фиксируется только тогда, когда приобретенной одной колонией свойство передается по наследству следующим поколениям.

Мутантов среди бактерий выявляют следующими методами:

  • прямой отбор (посев на специально подобранную селективную среду);
  • непрямое выявление, так называемый метод перепечатывания колоний с одной чашки Петри на другую до обнаружения прогнозированных мутантов;
  • пенициллиновый метод позволяет достаточно быстро выявить мутантов, поскольку вводимый исследователем пенициллин угнетает рост немутировавших клеток.

Исследование генетики бактерий производится с использованием новейшего оборудования, которое позволяет не только выявить изменения наследственности, но и на молекулярном уровне определить их природу.

Сегодня такие исследования генетики бактерий находятся в активной фазе. Микробиологи регулярно делятся зафиксированными новинками. О завершении исследований в этой области говорить пока еще очень рано.

  • Брожение как основной способ получения энергии у бактерий.
  • Влияние различных факторов на ширину запрещенной зоны и подвижность носителей
  • Вопрос 24 поверхности второго порядка (эллипсоид, цилиндры, конус) и их канонически уравнения. Исследование формы поверхности методом параллельных сечений.
  • Вся эти данные - основополагающие для проживания в теле человека многих тысяч вирусов, бактерий и микроорганизмов.
  • Геморрагические и ишемические инсульты у детей. Исследование рефлексов орального автоматизма и патологических стопных рефлексов у детей.
  • ЦЕЛЬ ЗАНЯТИЯ. Освоить и овладеть методами исследования бактерий на подвижность.

    МАТЕРИАЛЬНОЕ ОБЕСПЕЧЕНИЕ. Выделенные чистые культуры бактерий на МПБ. Обычные предметные стекла и с лунками, вазелин. Таблицы, схемы, рисунки.

    Выделив чистую культуру на жидкой питательной среде, определяют подвижность этих бактерий.

    Подвижность или ее отсутствие у бактерий является одним из многих признаков для определения их вида.

    Органами движения у некоторых видов бактерий являются жгутики. Они состоят из белковых веществ, отличающихся от белков тела клетки. Жгутики – очень тонкие образования, диаметр их 0,02-0,05 мкм. Они во много раз длиннее бактерий.

    Передвижение бактерий связано со спиралевидными движениями жгутиков.

    Рассмотреть жгутики у бактерий под обычным световым микроскопом невозможно, так как их малые размеры лежат за пределами разрешающей способности микроскопа. Обнаруживают жгутики у бактерий различными способами. Строение их и другие детали изучаются методом электронной и фазово-контрастной микроскопии. Расположение и количество жгутиков можно рассмотреть под световым микроскопом, применяя «сверхокраску» по методу Леффлера. Сложность и недоступность этих методов исключает их использование в условиях практических лабораторий. По расположению жгутиков подвижные микробы условно разделяют на 3 группы.

    1. Монотрихи – бактерии с одним жгутиком на конце.

    2. Лофотрихи – бактерии с пучком жгутиков на одном конце.

    3. Перитрихи – бактерии со жгутиками по всей поверхности тела (рис. 33).

    Практически изучение микробов в живом состоянии применяется для определения подвижности, то есть косвенного подтверждения наличия жгутиков. Движение микробов можно наблюдать в препаратах «раздавленная капля» или «висячая капля». Микроскопируют эти препараты сухим или иммерсионным объективом. Лучшие результаты получают при микроскопировании в темном поле зрения.

    Метод «раздавленной» капли. На середину предметного стекла наносят каплю исследуемого материала. Каплю накрывают покровным стеклом так, чтобы не появились пузырьки воздуха; жидкость должна заполнять все пространство и не выступать за края стекла.

    Рис. 33. Расположение жгутиков у бактерий

    Недостатком метода «раздавленной» капли является быстрое высыхание препарата. При длительном микроскопировании препарата рекомендуют смазывать края покровного стекла вазелином. Кроме того, можно использовать метод «висячей» капли.

    Метод «висячей» капли. Для приготовления этого препарата используют специальные предметные стекла с углублением («лункой») в центре. Небольшую каплю исследуемого материала наносят на середину покровного стекла, края лунки предварительно смазывают вазелином. Предметное стекло накладывают на покровное так, чтобы капля находилась в центре лунки. Затем его осторожно переворачивают, чтобы капля свисала в центре герметично закрытой полости лунки. В такой замкнутой полости капля защищена от высыхания (рис. 34).

    При микроскопии таких препаратов в проходящем свете для получения большей контрастности слегка затемняют поле зрения; конденсор при этом опускают, поступление света регулируют вогнутым зеркалом. Вначале пользуются малым увеличением (объектив х8), после того как обнаружат край капли, устанавливают объектив х40 или иммерсионный.

    При недостаточном опыте иногда ошибочно принимают пассивное молекулярное (броуновское) движение за истинное – активное. Следует учитывать, что при активном движении с помощью жгутиков бактерии могут пересекать все поле зрения и совершать круговые движения.

    Рис. 34. Препарат «висячая» капля для исследования бактерий на подвижность


    | | | | | | | | | | | | | | | | | | | | | | | | | | | | 29 | | | | | | | | |

    Бактерии — самая древняя группа организмов из ныне существующих на Земле. Первые бактерии появились, вероятно, более 3,5 млрд лет назад и на протяжении почти миллиарда лет были единственными живыми существами на нашей планете. Поскольку это были первые представители живой природы, их тело имело примитивное строение.

    Со временем их строение усложнилось, но и поныне бактерии считаются наиболее примитивными одноклеточными организмами. Интересно, что некоторые бактерии и сейчас ещё сохранили примитивные черты своих древних предков. Это наблюдается у бактерий, обитающих в горячих серных источниках и бескислородных илах на дне водоёмов.

    Большинство бактерий бесцветно. Только немногие окрашены в пурпурный или в зелёный цвет. Но колонии многих бактерий имеют яркую окраску, которая обусловливается выделением окрашенного вещества в окружающую среду или пигментированием клеток.

    Первооткрывателем мира бактерий был Антоний Левенгук — голландский естествоиспытатель 17 века, впервые создавший совершенную лупу-микроскоп, увеличивающую предметы в 160-270 раз.

    Бактерии относят к прокариотам и выделяют в отдельное царство — Бактерии.

    Форма тела

    Бактерии — многочисленные и разнообразные организмы. Они различаются по форме.

    Название бактерии Форма бактерии Изображение бактерии
    Кокки Шарообразная
    Бацилла Палочковидная
    Вибрион Изогнутая в виде запятой
    Спирилла Спиралевидная
    Стрептококки Цепочка из кокков
    Стафилококки Грозди кокков
    Диплококки Две круглые бактерии, заключённые в одной слизистой капсуле

    Способы передвижения

    Среди бактерий есть подвижные и неподвижные формы. Подвижные передвигаются за счёт волнообразных сокращений или при помощи жгутиков (скрученные винтообразные нити), которые состоят из особого белка флагеллина. Жгутиков может быть один или несколько. Располагаются они у одних бактерий на одном конце клетки, у других — на двух или по всей поверхности.

    Но движение присуще и многим иным бактериям, у которых жгутики отсутствуют. Так, бактерии, покрытые снаружи слизью, способны к скользящему движению.

    У некоторых лишённых жгутиков водных и почвенных бактерий в цитоплазме имеются газовые вакуоли. В клетке может быть 40-60 вакуолей. Каждая из них заполнена газом (предположительно — азотом). Регулируя количество газа в вакуолях, водные бактерии могут погружаться в толщу воды или подниматься на её поверхность, а почвенные бактерии — передвигаться в капиллярах почвы.

    Место обитания

    В силу простоты организации и неприхотливости бактерии широко распространены в природе. Бактерии обнаружены везде: в капле даже самой чистой родниковой воды, в крупинках почвы, в воздухе, на скалах, в полярных снегах, песках пустынь, на дне океана, в добытой с огромной глубины нефти и даже в воде горячих источников с температурой около 80ºС. Обитают они на растениях, плодах, у различных животных и у человека в кишечнике, ротовой полости, на конечностях, на поверхности тела.

    Бактерии — самые мелкие и самые многочисленные живые существа. Благодаря малым размерам они легко проникают в любые трещины, щели, поры. Очень выносливы и приспособлены к различным условиям существования. Переносят высушивание, сильные холода, нагревание до 90ºС, не теряя при этом жизнеспособность.

    Практически нет места на Земле, где не встречались бы бактерии, но в разных количествах. Условия жизни бактерий разнообразны. Одним из них необходим кислород воздуха, другие в нём не нуждаются и способны жить в бескислородной среде.

    В воздухе: бактерии поднимаются в верхние слои атмосферы до 30 км. и больше.

    Особенно много их в почве. В 1 г. почвы могут содержаться сотни миллионов бактерий.

    В воде: в поверхностных слоях воды открытых водоёмов. Полезные водные бактерии минерализуют органические остатки.

    В живых организмах: болезнетворные бактерии попадают в организм из внешней среды, но лишь в благоприятных условиях вызываю заболевания. Симбиотические живут в органах пищеварения, помогая расщеплять и усваивать пищу, синтезируют витамины.

    Внешнее строение

    Клетка бактерии одета особой плотной оболочкой — клеточной стенкой, которая выполняет защитную и опорную функции, а также придаёт бактерии постоянную, характерную для неё форму. Клеточная стенка бактерии напоминает оболочку растительной клетки. Она проницаема: через неё питательные вещества свободно проходят в клетку, а продукты обмена веществ выходят в окружающую среду. Часто поверх клеточной стенки у бактерий вырабатывается дополнительный защитный слой слизи — капсула. Толщина капсулы может во много раз превышать диаметр самой клетки, но может быть и очень небольшой. Капсула — не обязательная часть клетки, она образуется в зависимости от условий, в которые попадают бактерии. Она предохраняет бактерию от высыхания.

    На поверхности некоторых бактерий имеются длинные жгутики (один, два или много) или короткие тонкие ворсинки. Длина жгутиков может во много раз превышать разметы тела бактерии. С помощью жгутиков и ворсинок бактерии передвигаются.

    Внутреннее строение

    Внутри клетки бактерии находится густая неподвижная цитоплазма. Она имеет слоистое строение, вакуолей нет, поэтому различные белки (ферменты) и запасные питательные вещества размещаются в самом веществе цитоплазмы. Клетки бактерий не имеют ядра. В центральной части их клетки сконцентрировано вещество, несущее наследственную информации. Бактерии, — нуклеиновая кислота — ДНК. Но это вещество не оформлено в ядро.

    Внутренняя организация бактериальной клетки сложна и имеет свои специфические особенности. Цитоплазма отделяется от клеточной стенки цитоплазматической мембраной. В цитоплазме различают основное вещество, или матрикс, рибосомы и небольшое количество мембранных структур, выполняющих самые различные функции (аналоги митохондрий, эндоплазматической сети, аппарата Гольджи). В цитоплазме клеток бактерий часто содержатся гранулы различной формы и размеров. Гранулы могут состоять из соединений, которые служат источником энергии и углерода. В бактериальной клетке встречаются и капельки жира.

    В центральной части клетки локализовано ядерное вещество — ДНК, не отграниченная от цитоплазмы мембраной. Это аналог ядра — нуклеоид. Нуклеоид не обладает мембраной, ядрышком и набором хромосом.

    Способы питания

    У бактерий наблюдаются разные способы питания. Среди них есть автотрофы и гетеротрофы. Автотрофы — организмы, способные самостоятельно образовывать органические вещества для своего питания.

    Растения нуждаются в азоте, но сами усваивают азот воздуха не могут. Некоторые бактерии соединяют содержащиеся в воздухе молекулы азота с другими молекулами, в результате чего получаются вещества, доступные для растений.

    Эти бактерии поселяются в клетках молодых корней, что приводит к образованию на корнях утолщений, называемых клубеньками. Такие клубеньки образуются на корнях растений семейства бобовых и некоторых других растений.

    Корни дают бактериям углеводы, а бактерии корням — такие содержащие азот вещества, которые могут быть усвоены растением. Их сожительство взаимовыгодно.

    Корни растений выделяют много органических веществ (сахара, аминокислоты и другие), которыми питаются бактерии. Поэтому в слое почвы, окружающем корни, поселяется особенно много бактерий. Эти бактерии превращают отмершие остатки растений в доступные для растения вещества. Этот слой почвы называют ризосферой.

    Существует несколько гипотез о проникновении клубеньковых бактерий в ткани корня:

    • через повреждения эпидермальной и коровой ткани;
    • через корневые волоски;
    • только через молодую клеточную оболочку;
    • благодаря бактериям-спутникам, продуцирующим пектинолитические ферменты;
    • благодаря стимуляции синтеза В-индолилуксусной кислоты из триптофана, всегда имеющегося в корневых выделениях растений.

    Процесс внедрения клубеньковых бактерий в ткань корня состоит из двух фаз:

    • инфицирование корневых волосков;
    • процесс образования клубеньков.

    В большинстве случаев внедрившаяся клетка, активно размножается, образует так называемые инфекционные нити и уже в виде таких нитей перемещается в ткани растения. Клубеньковые бактерии, вышедшие из инфекционной нити, продолжают размножаться в ткани хозяина.

    Наполняющиеся быстро размножающимися клетками клубеньковых бактерий растительные клетки начинают усиленно делиться. Связь молодого клубенька с корнем бобового растения осуществляется благодаря сосудисто-волокнистым пучкам. В период функционирования клубеньки обычно плотные. К моменту проявления оптимальной активности клубеньки приобретают розовую окраску (благодаря пигменту легоглобину). Фиксировать азот способны лишь те бактерии, которые содержат легоглобин.

    Бактерии клубеньков создают десятки и сотни килограммов азотных удобрений на гектаре почвы.

    Обмен веществ

    Бактерии отличаются друг от друга обменом веществ. У одних он идёт при участии кислорода, у других — без его участия.

    Большинство бактерий питается готовыми органическими веществами. Лишь некоторые из них (сине-зелёные, или цианобактерии), способны создавать органические вещества из неорганических. Они сыграли важную роль в накоплении кислорода в атмосфере Земли.

    Бактерии впитывают вещества извне, разрывают их молекулы на части, из этих частей собирают свою оболочку и пополняют своё содержимое (так они растут), а ненужные молекулы выбрасывают наружу. Оболочка и мембрана бактерии позволяет ей впитывать только нужные вещества.

    Если бы оболочка и мембрана бактерии были полностью непроницаемыми, в клетку не попали бы никакие вещества. Если бы они были проницаемыми для всех веществ, содержимое клетки перемешалось бы со средой — раствором, в которой обитает бактерия. Для выживания бактерии необходима оболочка, которая нужные вещества пропускает, а ненужные — нет.

    Бактерия поглощает находящиеся близ неё питательные вещества. Что происходит потом? Если она может самостоятельно передвигаться (двигая жгутик или выталкивая назад слизь), то она перемещается, пока не найдёт необходимые вещества.

    Если она двигаться не может, то ждёт, пока диффузия (способность молекул одного вещества проникать в гущу молекул другого вещества) не принесёт к ней необходимые молекулы.

    Бактерии в совокупности с другими группами микроорганизмов выполняют огромную химическую работу. Превращая различные соединения, они получают необходимую для их жизнедеятельности энергию и питательные вещества. Процессы обмена веществ, способы добывания энергии и потребности в материалах для построения веществ своего тела у бактерий разнообразны.

    Другие бактерии все потребности в углероде, необходимом для синтеза органических веществ тела, удовлетворяют за счёт неорганических соединений. Они называются автотрофами. Автотрофные бактерии способны синтезировать органические вещества из неорганических. Среди них различают:

    Хемосинтез

    Использование лучистой энергии — важнейший, но не единственный путь создания органического вещества из углекислого газа и воды. Известны бактерии, которые в качестве источника энергии для такого синтеза используют не солнечный свет, а энергию химических связей, происходящих в клетках организмов при окислении некоторых неорганических соединений — сероводорода, серы, аммиака, водорода, азотной кислоты, закисных соединений железа и марганца. Образованное с использованием этой химической энергии органическое вещество они используют для построения клеток своего тела. Поэтому такой процесс называют хемосинтезом.

    Важнейшую группу хемосинтезирующих микроорганизмов составляют нитрифицирующие бактерии. Эти бактерии живут в почве и осуществляют окисление аммиака, образовавшегося при гниении органических остатков, до азотной кислоты. Последняя, реагирует с минеральными соединениями почвы, превращаются в соли азотной кислоты. Этот процесс проходит в две фазы.

    Железобактерии превращают закисное железо в окисное. Образованная гидроокись железа оседает и образует так называемую болотную железную руду.

    Некоторые микроорганизмы существуют за счёт окисления молекулярного водорода, обеспечивая тем самым автотрофный способ питания.

    Характерной особенностью водородных бактерий является способность переключаться на гетеротрофный образ жизни при обеспечении их органическими соединениями и отсутствии водорода.

    Таким образом, хемоавтотрофы являются типичными автотрофами, так как самостоятельно синтезируют из неорганических веществ необходимые органические соединения, а не берут их в готовом виде от других организмов, как гетеротрофы. От фототрофных растений хемоавтотрофные бактерии отличаются полной независимостью от света как источника энергии.

    Бактериальный фотосинтез

    Некоторые пигментосодержащие серобактерии (пурпурные, зелёные), содержащие специфические пигменты — бактериохлорофиллы, способны поглощать солнечную энергию, с помощью которой сероводород в их организмах расщепляется и отдаёт атомы водорода для восстановления соответствующих соединений. Этот процесс имеет много общего с фотосинтезом и отличается только тем, что у пурпурных и зелёных бактерий донором водорода является сероводород (изредка — карбоновые кислоты), а у зелёных растений — вода. У тех и других отщепление и перенесение водорода осуществляется благодаря энергии поглощённых солнечных лучей.

    Такой бактериальный фотосинтез, который происходит без выделения кислорода, называется фоторедукцией. Фоторедукция углекислого газа связана с перенесением водорода не от воды, а от сероводорода:

    6СО 2 +12Н 2 S+hv → С6Н 12 О 6 +12S=6Н 2 О

    Биологическое значение хемосинтеза и бактериального фотосинтеза в масштабах планеты относительно невелико. Только хемосинтезирующие бактерии играют существенную роль в процессе круговорота серы в природе. Поглощаясь зелёными растениями в форме солей серной кислоты, сера восстанавливается и входит в состав белковых молекул. Далее при разрушении отмерших растительных и животных остатков гнилостными бактериями сера выделяется в виде сероводорода, который окисляется серобактериями до свободной серы (или серной кислоты), образующий в почве доступные для растения сульфиты. Хемо- и фотоавтотрофные бактерии имеют существенное значение в круговороте азота и серы.

    Спорообразование

    Внутри бактериальной клетки образуются споры. В процессе спорообразования бактериальная клетка претерпевает ряд биохимических процессов. В ней уменьшается количество свободной воды, снижается ферментативная активность. Это обеспечивает устойчивость спор к неблагоприятным условиям внешней среды (высокой температуре, высокой концентрации солей, высушиванию и др.). Спорообразование свойственно только небольшой группе бактерий.

    Споры — не обязательная стадия жизненного цикла бактерий. Спорообразование начинается лишь при недостатке питательных веществ или накоплении продуктов обмена. Бактерии в виде спор могут длительное время находиться в состоянии покоя. Споры бактерий выдерживают продолжительное кипячение и очень длительное проммораживание. При наступлении благоприятных условий спора прорастает и становится жизнеспособной. Спора бактерий — это приспособление к выживанию в неблагоприятных условиях.

    Размножение

    Размножаются бактерии делением одной клетки на две. Достигнув определённого размера, бактерия делится на две одинаковые бактерии. Затем каждая из них начинает питаться, растёт, делится и так далее.

    После удлинения клетки постепенно образуется поперечная перегородка, а затем дочерние клетки расходятся; у многих бактерий в определённых условиях клетки после деления остаются связанными в характерные группы. При этом в зависимости от направления плоскости деления и числа делений возникают разные формы. Размножение почкованием встречается у бактерий как исключение.

    При благоприятных условиях деление клеток у многих бактерий происходит через каждые 20-30 минут. При таком быстром размножении потомство одной бактерии за 5 суток способно образовать массу, которой можно заполнить все моря и океаны. Простой подсчёт показывает, что за сутки может образоваться 72 поколения (720 000 000 000 000 000 000 клеток). Если перевести в вес — 4720 тонн. Однако в природе этого не происходит, так как большинство бактерий быстро погибают под действием солнечного света, при высушивании, недостатке пищи, нагревании до 65-100ºС, в результате борьбы между видами и т.д.

    Бактерия (1), поглотившая достаточно пищи, увеличивается в размерах (2) и начинает готовиться к размножению (делению клетки). Её ДНК (у бактерии молекула ДНК замкнута в кольцо) удваивается (бактерия производит копию этой молекулы). Обе молекулы ДНК (3,4) оказываются, прикреплены к стенке бактерии и при удлинении бактерии расходятся в стороны (5,6). Сначала делится нуклеотид, затем цитоплазма.

    После расхождения двух молекул ДНК на бактерии появляется перетяжка, которая постепенно разделяет тело бактерии на две части, в каждой из которых есть молекула ДНК (7).

    Бывает (у сенной палочки), две бактерии слипаются, и между ними образуется перемычка (1,2).

    По перемычке ДНК из одной бактерии переправляется в другую (3). Оказавшись в одной бактерии, молекулы ДНК сплетаются, слипаются в некоторых местах (4), после чего обмениваются участками (5).

    Роль бактерий в природе

    Круговорот

    Бактерии — важнейшее звено общего круговорота веществ в природе. Растения создают сложные органические вещества из углекислого газа, воды и минеральных солей почвы. Эти вещества возвращаются в почву с отмершими грибами, растениями и трупами животных. Бактерии разлагают сложные вещества на простые, которые снова используют растения.

    Бактерии разрушают сложные органические вещества отмерших растений и трупов животных, выделения живых организмов и разные отбросы. Питаясь этими органическими веществами, сапрофитные бактерии гниения превращают их в перегной. Это своеобразные санитары нашей планеты. Таким образом, бактерии активно участвуют в круговороте веществ в природе.

    Почвообразование

    Поскольку бактерии распространены практически повсеместно и встречаются в огромном количестве, они во многом определяют различные процессы, происходящие в природе. Осенью опадают листья деревьев и кустарников, отмирают надземные побеги трав, опадают старые ветки, время от времени падают стволы старых деревьев. Всё это постепенно превращается в перегной. В 1 см 3 . поверхностного слоя лесной почвы содержатся сотни миллионов сапрофитных почвенных бактерий нескольких видов. Эти бактерии превращают перегной в различные минеральные вещества, которые могут быть поглощены из почвы корнями растений.

    Некоторые почвенные бактерии способны поглощать азот из воздуха, используя его в процессах жизнедеятельности. Эти азотофиксирующие бактерии живут самостоятельно или поселяются в корнях бобовых растений. Проникнув в корни бобовых, эти бактерии вызывают разрастание клеток корней и образование на них клубеньков.

    Эти бактерии выделяют азотные соединения, которые используют растения. От растений бактерии получают углеводы и минеральные соли. Таким образом, между бобовым растением и клубеньковыми бактериями существует тесная связь, полезная как одному, так и другому организму. Это явление носит название симбиоза.

    Благодаря симбиозу с клубеньковыми бактериями бобовые растения обогащают почву азотом, способствуя повышению урожая.

    Распространение в природе

    Микроорганизмы распространены повсеместно. Исключение составляют лишь кратеры действующих вулканов и небольшие площадки в эпицентрах взорванных атомных бомб. Ни низкие температуры Антарктики, ни кипящие струи гейзеров, ни насыщенные растворы солей в соляных бассейнах, ни сильная инсоляция горных вершин, ни жёсткое облучение атомных реакторов не мешают существованию и развитию микрофлоры. Все живые существа постоянно взаимодействуют с микроорганизмами, являясь часто не только их хранилищами, но и распространителями. Микроорганизмы — аборигены нашей планеты, активно осваивающие самые невероятные природные субстраты.

    Микрофлора почвы

    Количество бактерий в почве чрезвычайно велико — сотни миллионов и миллиардов особей в 1 грамме. В почве их значительно больше, чем в воде и воздухе. Общее количество бактерий в почвах меняется. Количество бактерий зависит от типа почв, их состояния, глубины расположения слоёв.

    На поверхности почвенных частиц микроорганизмы располагаются небольшими микроколониями (по 20-100 клеток в каждой). Часто они развиваются в толщах сгустков органического вещества, на живых и отмирающих корнях растений, в тонких капиллярах и внутри комочков.

    Микрофлора почвы очень разнообразна. Здесь встречаются разные физиологические группы бактерий: бактерии гниения, нитрифицирующие, азотфиксирующие, серобактерии и др. среди них есть аэробы и анаэробы, споровые и не споровые формы. Микрофлора — один из факторов образования почв.

    Областью развития микроорганизмов в почве является зона, примыкающая к корням живых растений. Её называют ризосферой, а совокупность микроорганизмов, содержащихся в ней, — ризосферной микрофлорой.

    Микрофлора водоёмов

    Вода — природная среда, где в большом количестве развиваются микроорганизмы. Основная масса их попадает в воду из почвы. Фактор, определяющий количество бактерий в воде, наличие в ней питательных веществ. Наиболее чистыми являются воды артезианских скважин и родниковые. Очень богаты бактериями открытые водоёмы, реки. Наибольшее количество бактерий находится в поверхностных слоях воды, ближе к берегу. При удалении от берега и увеличении глубины количество бактерий уменьшается.

    Чистая вода содержит 100-200 бактерий в 1 мл., а загрязнённая — 100-300 тыс. и более. Много бактерий в донном иле, особенно в поверхностном слое, где бактерии образуют плёнку. В этой плёнке много серо- и железобактерий, которые окисляют сероводород до серной кислоты и тем самым предотвращают замор рыбы. В иле больше спороносных форм, в то время как в воде преобладают неспороносные.

    По видовому составу микрофлора воды сходна с микрофлорой почвы, но встречаются и специфические формы. Разрушая различные отбросы, попавшие в воду, микроорганизмы постепенно осуществляют так называемое биологическое очищение воды.

    Микрофлора воздуха

    Микрофлора воздуха менее многочисленна, чем микрофлора почвы и воды. Бактерии поднимаются в воздух с пылью, некоторое время могут находиться там, а затем оседают на поверхность земли и гибнут от недостатка питания или под действием ультрафиолетовых лучей. Количество микроорганизмов в воздухе зависит от географической зоны, местности, времени года, загрязнённостью пылью и др. каждая пылинка является носителем микроорганизмов. Больше всего бактерий в воздухе над промышленными предприятиями. Воздух сельской местности чище. Наиболее чистый воздух над лесами, горами, снежными пространствами. Верхние слои воздуха содержат меньше микробов. В микрофлоре воздуха много пигментированных и спороносных бактерий, которые более устойчивы, чем другие, к ультрафиолетовым лучам.

    Микрофлора организма человека

    Тело человека, даже полностью здорового, всегда является носителем микрофлоры. При соприкосновении тела человека с воздухом и почвой на одежде и коже оседают разнообразные микроорганизмы, в том числе и патогенные (палочки столбняка, газовой гангрены и др.). Наиболее часто загрязняются открытые части человеческого тела. На руках обнаруживают кишечные палочки, стафилококки. В ротовой полости насчитывают свыше 100 видов микробов. Рот с его температурой, влажностью, питательными остатками — прекрасная среда для развития микроорганизмов.

    Желудок имеет кислую реакцию, поэтому основная масса микроорганизмов в нём гибнет. Начиная с тонкого кишечника реакция становится щелочной, т.е. благоприятной для микробов. В толстых кишках микрофлора очень разнообразна. Каждый взрослый человек выделяет ежедневно с экскрементами около 18 млрд. бактерий, т.е. больше особей, чем людей на земном шаре.

    Внутренние органы, не соединяющиеся с внешней средой (мозг, сердце, печень, мочевой пузырь и др.), обычно свободны от микробов. В эти органы микробы попадают только во время болезни.

    Бактерии в круговороте веществ

    Микроорганизмы вообще и бактерии в частности играют большую роль в биологически важных круговоротах веществ на Земле, осуществляя химические превращения, совершенно недоступные ни растениям, ни животным. Различные этапы круговорота элементов осуществляются организмами разного типа. Существование каждой отдельной группы организмов зависит от химического превращения элементов, осуществляемого другими группами.

    Круговорот азота

    Циклическое превращение азотистых соединений играет первостепенную роль в снабжении необходимыми формами азота различных по пищевым потребностям организмов биосферы. Свыше 90% общей фиксации азота обусловлено метаболической активностью определённых бактерий.

    Круговорот углерода

    Биологическое превращение органического углерода в углекислый газ, сопровождающееся восстановлением молекулярного кислорода, требует совместной метаболической активности разнообразных микроорганизмов. Многие аэробные бактерии осуществляют полное окисление органических веществ. В аэробных условиях органические соединения первоначально расщепляются путём сбраживания, а органические конечные продукты брожения окисляются далее в результате анаэробного дыхания, если имеются неорганические акцепторы водорода (нитрат, сульфат или СО 2).

    Круговорот серы

    Для живых организмов сера доступна в основном в форме растворимых сульфатов или восстановленных органических соединений серы.

    Круговорот железа

    В некоторых водоёмах с пресной водой содержатся в высоких концентрациях восстановленные соли железа. В таких местах развивается специфическая бактериальная микрофлора — железобактерии, окисляющие восстановленное железо. Они участвуют в образовании болотных железных руд и водных источников, богатых солями железа.

    Бактерии являются самыми древними организмами, появившимися около 3,5 млрд. лет назад в архее. Около 2,5 млрд. лет они доминировали на Земле, формируя биосферу, участвовали в образовании кислородной атмосферы.

    Бактерии являются одними из наиболее просто устроенных живых организмов (кроме вирусов). Полагают, что они - первые организмы, появившиеся на Земле.

    Приготовления простых препаратов часто бывает недостаточно для обнаружения бактерий в светлом поле микроскопа.

    В этом случае применяют иную методику микроскопических исследований (как правило, фазово-контрастную) или окрашивание бактерий.

    Приготовление и окрашивание мазка . Использование фазово-контрастной методики предполагает наличие соответствующего микроскопа и приготовление свежих препаратов. Окрашивание состоит из следующих этапов.

    Приготовление мазка . Раздавленный растительный материал (пораженная ткань) или культуру микроорганизмов с помощью петли переносят в каплю водопроводной воды на обезжиренном предметном стекле (для обезжиривания стекла выдерживают в хромпике или протирают бензином, ксилолом, смесью соляной кислоты со спиртом) и растирают равномерно по площади 3X1,5 см. При этом надо следить за тем, чтобы плотность бактериальной суспензии была не выше необходимой для слабого помутнения.

    Воздушная сушка и фиксация . Полученный мазок высушивают на воздухе и фиксируют путем нагревания. Для этого предметное стекло берут пинцетом или каким-нибудь держателем и мазком вверх трижды медленно проводят через светящуюся часть пламени бунзеновской горелки.

    Окрашивание . После фиксации предметное стекло кладут горизонтально на планшет для окрашивания и каплями наносят на мазок фильтрованный раствор соответствующего красителя. Красящий раствор должен покрывать все предметное стекло.

    Методы окрашивания и красители . Для быстрого окрашивания бактериальных мазков пригодны основные анилиновые красители. Особенно рекомендуется окрашивание метиленовой синью по Лёффлеру. Вначале готовят насыщенный спиртовой раствор красителя, который можно хранить длительное время. Непосредственно перед окрашиванием 30 мл этого раствора смешивают с 70 мл 0,01%-ного раствора КОН. Время окрашивания составляет 5-8 мин.

    При окрашивании карболфуксином по Цилю и Нильсену используется насыщенный спиртовой раствор основного фуксина. Для приготовления красящего раствора 1 часть маточного раствора смешивают с 5%-ным раствором фенола. Время окрашивания - 0,5-1 мин.

    Удаление красящего раствора и очистка мазка . После окончания окрашивания красящему раствору дают стечь с предметного стекла, остатки смывают водопроводной водой. Мазок высушивают на воздухе или удаляют капельную жидкость фильтровальной бумагой. Следы красителя на рабочем столе или на руках можно удалить подкисленным спиртом.

    Наблюдение . Окрашенные препараты рассматривают с применением иммерсионных объектов с высокой апертурой. Для этого пригодны ахроматы и апохроматы с увеличением 90 X - 100 X или аналогичные объективы. В качестве иммерсионной жидкости используется имеющееся в продаже иммерсионное масло с показателем преломления 1,515.

    На окрашенных препаратах определяют: наличие бактерий в препарате; форму бактериальных клеток (округлая, палочковидная, нитевидная и др.); размеры клеток (длина, ширина); вид агрегации (отдельные клетки, группы, зооглеи и т. д.).

    Окрашивание по Граму . При идентификации многих фитопатогенных бактерий решающим показателем является окрашивание по Граму. Этот дифференцирующий признак основан на различиях в строении оболочки бактериальных клеток. К грамположительным прежде всего относятся виды Corynebacterium, в то время как большинство других фитопатогениых бактерий реагирует на окрашивание отрицательно. Методика окрашивания состоит в следующем.

    Приготовление мазка на обезжиренном предметном стекле, его высушивание на воздухе и фиксирование нагреванием.

    Нанесение на мазок капли карболового раствора генцианвиолета (торговый препарат или 10 мл насыщенного спиртового раствора генциан-виолета + 90 мл 2,5%-ного фенола), инкубация в течение 2-5 мин.

    Сливание красящего раствора и нанесение на предметное стекло раствора Люголя (торговый препарат или 2 г KI растворить в небольшом количестве дистиллированной воды, добавить 1 г йода и довести объем до 300 мл).

    Промывка 96%-ным спиртом (в химическом стакане) до полного исчезновения следов краски.

    Высушивание (иногда не проводится).

    Контрастное окрашивание карбол-фуксином (маточный раствор или его разведения) в течение 1-2 сек. Карбол-фуксин можно заменить 1%-ным сафранином, увеличив время окрашивания до 3-5 мин.

    Результаты окрашивания по Граму можно установить только при хорошем освещении (принцип освещения по Кёлеру), используя иммерсионный объектив и полностью открыв диафрагму. Грамположительные микроорганизмы окрашиваются в темно-синий цвет, грамотрицательные - в бледно-розовый или светло-красный.

    Примечание . Для контроля качества окрашивания, подбора концентраций красящих растворов и времени окрашивания настоятельно рекомендуется использовать какой-либо вид бактерий с четко выраженной грамположительной реакцией, например Escherichia coli.

    Окрашивание жгутиков . При диагностике бактерий ключевую роль играет форма жгутиков. Их расположение и число можно определить с помощью электронного микроскопа или специального окрашивания. Из-за особой сложности этого процесса разработаны различные способы окрашивания жгутиков. Почти всегда после фиксирования препарата проводят специальную обработку каким-нибудь протравливающим раствором (как правило, содержащим таннин), который вызывает набухание белка жгутиков. Лишь затем приступают к окрашиванию.

    Из имеющихся методов в качестве примера приведен относительно простой, но широко применяющийся вариант окрашивания по Лейфсону. Для ознакомления с другими методами окрашивания, например по Пепплеру, Грею, Лёффлеру, можно обратиться к специальной литературе.

    Для окрашивания жгутиков используют молодые культуры бактерий, развивавшиеся от 8 до 24 ч при температуре, оптимальной для данного вида (25, 28, 32 или 37 °С). На обезжиренное предметное стекло наносят тонкий мазок, затем на еще влажный препарат - каплю свежеприготовленного и отфильтрованного раствора следующего состава: 1,5%-ный NaCl - 20 мл, 3%-ный таннин - 20 мл, 1,2%-ный спиртовой раствор парароз1аанилина - 20 мл. Далее препарат подсушивают на воздухе.

    Время окрашивания - 20-30 мин. Препараты просматривают с иммерсионными объективами (апохромат или ахромат 20X или 100 X) при хорошем освещении. Вместо парарозаанилина можно использовать 1,2%-ный спиртовой раствор фуксина.

    Определение подвижности . Признак подвижности имеет особое значение при дифференциации бактериальных возбудителей болезней. Для его определения рекомендованы следующие методы.

    1. Небольшое количество исследуемой культуры переносят петлей в каплю водопроводной воды на чистом покровном стекле, которое затем кладут каплей вниз на предметное стекло с шлифованной лункой или на стеклянное кольцо, приклеенное к предметному стеклу. Этот способ носит название «наблюдение в висячей капле»,

    2. Из свежей культуры готовят простой микроскопический препарат и рассматривают его при среднем увеличении (объектив 20Х или 40Х) и хорошем освещении. При этом микроскоп фокусируют на край капли и медленно передвигают препарат к ее середине. Вблизи краевой зоны подвижность бактерий видна лучше всего, причем подвижными можно считать только те бактерии, которые совершают направленное или вращательное движение. Дрожание почти на одном месте вызвано броуновским движением молекул и часто встречается у неподвижных бактерий.

    Определение спорообразования . Выделив грамположительные бактерии, часто приходится устанавливать, способны ли они к спорообразованию. Как правило, спорообразующие бактерии не являются возбудителями болезней. Признак спорообразования можно установить физиологическим путем (по устойчивости спор к высокой температуре) или с помощью микроскопических препаратов.

    Тест с нагреванием . Из двух-трехдневной культуры на косом агаре небольшую порцию исследуемого материала переносят в пробирку с 3 мл питательного бульона (pH 7,0), пробирку помещают на 10 мин в водяную баню при 70-80 °С и затем инкубируют при 28 °С в течение 24 ч. Контролем служит пробирка с инокулированным, но непрогретым бульоном. Если после инкубации появляется отчетливое помутнение бульона, исследуемая бактерия относится к числу спорообразующих.

    Микроскопическое определение спорообразования . Споры в бактериальных клетках можно обнаружить в окрашенных препаратах. Во многих случаях для этого достаточно окрашивания метиленовой синью или карболфуксином, а также по Граму, но есть и специальные методы окрашивания спор.

    1. Окрашивание по Виртцу: подсушенный на воздухе и фиксированный нагреванием мазок покрывают 5%-ным раствором малахитовой зелени, затем осторожно нагревают предметное стекло над пламенем горелки до полного испарения красителя.

    Добавление и испарение красителя повторяют несколько раз до появления пленки с металлическим блеском. Избыток краски смывают 2-3 мин под струей водопроводной воды. Затем препарат помещают в стакан с водой еще на 4-5 мин. После высушивания на воздухе или фильтровальной бумагой проводят контрастное окрашивание 10%-ным раствором сафранина (10 мин), вновь промывают препарат водопроводной водой, осторожно обсушивают и просматривают с масляной иммерсией. Споры окрашиваются в зеленый цвет, вегетативные части клетки - в красный.

    2. Окрашивание по Мёллеру: высушенный на воздухе и фиксированный теплом мазок покрывают карболфуксином, нагревают над слабым пламенем горелки до образования пузырьков и промывают 96%-ным спиртом до полного удаления остатков красителя. После промывания водопроводной водой и подсушивания препарат контрастно окрашивают метиленовой синью (1 часть маточного раствора и 9 частей дистиллированной воды) и просматривают с масляной иммерсией. Споры окрашиваются в красный цвет, вегетативные части клеток - в синий.

    Более подробные описания методов окрашивания приведены в специальной литературе.

    Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .