Какая концентрация кислорода может быть в помещении. Опасные факторы пожара. Какие элементы требуются для возникновения пожара

Опасные факторы пожара (ОФП) — факторы пожара, приносящие вред здоровью человека или его гибель, а также материальный ущерб.

К опасным факторам пожара относятся:

— пониженное содержание кислорода;

— повышенная температура окружающей среды;

— пламя и искры;

— токсичные продукты горения.

Опасные факторы пожара оцениваются по определенному критерию. Таким критерием является его предельно допустимое значение, т.е. такое значение при котором воздействие на человека в течение критической продолжительности пожара (время блокирования путей эвакуации ОФП, умноженное на 0,8) не приводит к травме, заболеванию или отклонению в состоянии здоровья в течение нормативно установленного времени.

Пониженное содержание кислорода.

В процессе развития пожара кислород, входящий в состав воздуха расходуется на горение веществ и материалов, составляющих пожарную нагрузку. Продукты горения, содержащие газообразные и твердые частицы (в виде аэрозоля) выделяются в окружающую атмосферу и смешиваются со свежим воздухом. За счет этого концентрация кислорода при пожаре понижается. Пониженное содержание кислорода характерно для любой зоны пожара, в которой есть дым: зоны горения, зоны теплового воздействия и зоны задымления. При этом, пониженное содержание кислорода, как опасный фактор пожара, как правило, существует при пожаре в густом дымовом слое. Например, в припотолочном слое в коридоре этажа пожара или в самом горящем помещении низкая концентрация кислорода представляет угрозу. Также пониженное содержание кислорода наблюдается при развитых пожарах в помещениях, регулируемых вентиляцией, т.е. при недостатке кислорода воздуха. Разбавленный дым, находящийся в нижнем слое в помещениях (коридорах, лестничных клетках) вдали от очага пожара, как правило, не представляет угрозы по пониженному содержанию кислорода.

В нашей стране в качестве предельно допустимого значения такого опасного фактора пожара, как пониженное содержание кислорода, установлено 0,226 кг/м 3 .

Повышенная температура окружающей среды.

При любом пожаре выделяется тепловая энергия. Количество выделившегося тепла зависит от условий воздухообмена в очаге пожара, теплофизических свойств окружающих материалов (в том числе и строительных), пожароопасных свойств горючих веществ и материалов, входящих в состав пожарной нагрузки.

Само по себе понятие «повышенная температура окружающей среды», на мой взгляд, не совсем точное. На мой взгляд, под этим понятием все же нужно подразумевать «повышенная температура продуктов горения», поскольку окружающая среда при оценке пожарной опасности почти всегда рассматривается как окружающий (незадымленный) воздух с начальной температурой.

При рассмотрении повышенной температуры окружающей среды, как опасного фактора пожара, следует отметить, что опасное воздействие нагретых продуктов горения на организм человека определяется, прежде всего, влажностью воздуха. Чем больше влажность воздуха, тем вероятность получения ожогов выше. Предельно допустимое значение по повышенной температуре окружающей среды в нашей стране составляет 70°С.

Повышенная температура продуктов горения представляет опасность не только для человека, но может стать причиной распространения пожара.

Дым. Потеря видимости в дыму.

Дым представляет собой смесь продуктов горения, в которых взвешены небольшие частицы жидких и твердых веществ.

За счет наличия в составе дыма твердых и жидких частиц, при прохождении через него света, интенсивность последнего снижается, что в итоге приводит к снижению и потере видимости в дыму.

Напрямую, снижение видимости в дыму не представляет угрозы жизни и здоровью людей как опасный фактор пожара. Однако, хочу отметить следующее. Если человек, выбежит в задымленный коридор, то при некоторой критической видимости, из-за страха к пожару он может вернуться обратно. Причем процент вернувшихся обратно людей возрастает с понижением видимости. Это подтверждено исследованиями, проведенными в Англии и США.

Как показывает практика проведения расчетов опасных факторов пожара, блокирование путей эвакуации чаще всего наступает по потере видимости в дыму.

Предельное значение по потере видимости в дыму в нашей стране принято значение 20 м.

Пламя и искры. Тепловой поток.

Как говорится в известной поговорке: «Нет дыма без огня». Значительная часть пожаров протекает в режиме пламенного горения. Несмотря на то, что пожары могут начинаться с тления, в основном все они затем переходят в пламенное горение.

Пламя, или открытый огонь представляет значительную угрозу жизни и здоровья людей, а также способствует распространению пожара по объекту. Распространение пожара может осуществляться на десятки метров за счет теплового излучения пламени. Критерием оценки пламени, как опасного фактора пожара, является тепловой поток или плотность теплового излучения.

Как правило, в зданиях (жилых и общественных) пламя не представляет значительной опасности, т.к. до того момента, когда пожар значительно разовьется, люди успевают эвакуироваться. Но, к сожалению, так бывает не всегда.

Особую опасность пламя, тепловой поток, им создаваемый, представляет на производственных объектах, особенно где обращаются горючие газы, легковоспламеняющиеся и горючие жидкости. Аварии на таких объектах могут носить спонтанный характер, а тепловой поток, создаваемый при пожарах, представляет угрозу жизни и здоровья людей на значительных расстояниях от очага пожара.

Предельное значение теплового потока, принятое в нашей стране, составляет 1,4 кВт/м 2 , в зарубежной практике данное значение составляет 2,5 кВт/м 2 .

Токсичные продукты горения.

Токсичные продукты горения являются, на мой взгляд, наиболее опасным из опасных факторов пожара (извините за тавтологию), особенно в жилых и общественных зданиях. В нашей стране к токсичным продуктам горения относятся диоксид углерода (углекислый газ), монооксид углерода (угарный газ) и хлороводород.

В нашей стране предельно допустимые значения опасных факторов пожара для каждого из токсичных газообразных продуктов горения приняты следующие:

— диоксид углерода CO2 – 0,11 кг/м 3 ;

— монооксид углерода CO – 1,16·10 -3 кг/м 3 ;

— хлороводород HCl– 2,3·10 -5 кг/м 3 .

В зарубежной практике к токсичным продуктам горения относят угарный газ и циановодород (HCN), углекислый газ отнесен к разряду удушающих газов, хлороводород отнесен к раздражающим газам. Также, за рубежом, в частности в США, принята так называемая концепция «fractional effective dose» (FED), по которой учитывается усиление токсического воздействия при действии одновременно нескольких токсичных компонентов. Данное явление называется «синергизм».

В данной статье мы рассмотрели основные опасные факторы пожара и их предельно допустимые значения. Более подробно каждый из опасных факторов пожара будет рассмотрен в следующих статьях.

Углекислым газом смеси паров ацетона в воздухе

Решение : По табл.3 приложения находим теплоту образования ацетона 248,1∙10 3 Дж/моль. Из химической формулы ацетона (С 3 Н 6 О)следует, что m с =3, m n =6, m 0 =1.Значение остальных параметров выбираем из табл.2 для двуокиси углерода:

φф=100∙0,735∙10 5 ∙248,1∙10 3 +0,584+1,292∙3+0,427∙6+0,570∙1 =48,1%

2,020-1+4,642∙3+1,160∙6-2,321∙1

φ О2 = =10,7; φ О2 без =1,2∙10,7-4,2=8,6%.

Следовательно, при снижении концентрации кислорода в четырехкомпонентной системе, состоящей из паров ацетона, двуокиси углерода, азота и кислорода, до 8,6% смесь является взрывобезопасной. При содержании же кислорода, равном 10,7% эта смесь будет предельной по взрываемости.

Согласно справочным данным, МВСК ацетоно-оздушной смеси при разбавлении ее двуокисью углерода составляет14,9%. Определим относительную ошибку расчета:

Таким образом, результаты расчета МВСК занижены на 28%

Контрольные задачи

1. По предельной теплоте сгорания определить, как изменяется нижний концентрационный предел воспламенения в воздухе от положения предельных углеводородов(этан, пропан, бутан, пентан, пропан, гексан) в гомологическом ряду. Построить график зависимости НКПВ от молекулярной массы горючего.

2. По аппроксимационной формуле рассчитать, как изменяются концентрационные пределы жирных спиртов (метиловый, этиловый, гексиловый, октиловый) в гомологическом ряду. Построить график зависимости нижнего и верхнего пределов воспламенения от молекулярной массы горючего.

3. Определить концентрационные пределы воспламенения сероуглерода при атмосферном давлении, равном 990ГПа, если его температурные пределы составляют 223+299К

5. Определить концентрационные пределы воспламенения парогазовой смеси, состоящей из 20% этана, 60% этилена и 20% паров этилового спирта.

6. Определить концентрационные пределы воспламенения в воздухе смеси паров, состоящей из 50%бензола,35% толуола и 15% фенола, при увеличении температуры с 298 до 373К.

7. Определить, образуется ли взрывоопасная концентрация при испарении в помещении объемом 220м 3 15кг деканола, если температура 310К, давление 1105 ГПа?

8. Определить возможно ли образование взрывоопасной концентрации при температуре 298 К над поверхностью жидкой фазы, состоящей из 25% уксуснометилового эфира,40% уксусного ангидрида, 35% амилового спирта?

9. Определить состав двухкомпонентной газовой смеси, состоящей из паров аммиака и сероводорода, если известно, что ее нижний концентрационный предел воспламенения в воздухе составляет 5,8%.

10. Определить безопасную концентрацию кислорода при разбавлении паров уксуснопропилового эфира (∆Н 0 𝒾 =513,7∙10 3 Дж/моль)в воздухе двуокисью углерода, водяным паром и азотом. Объяснить причину различной флегматизирующей эффективности инертных газов.

Одним из применений азота является предотвращение возгорания или взрыва многих веществ. Как известно, возгорание и взрыв - это частный случай процесса окисления, а единственным встречающимся на Земле в свободном виде и в достаточном количестве окислителем является кислород, который содержится в атмосфере в количестве примерно 21% по объему. Соответственно, задача предотвращения возгорания или взрыва может быть решена путем замещения кислорода каким-либо инертным газом - а наиболее дешевым и легко получаемым инертным газом является азот.

В таблице ниже показано максимально допустимое процентное содержание кислорода в смеси с некоторыми газообразными горючими веществами и в смеси с парами некоторых жидких горючих веществ. Таблица составлена на основе данных американской государственной организации - Агенство по контролю шахт (Bureau of Mines). В свою очередь, Агенство получило эти данные как результат проведенных экспериментов: смесь пожаро-/взрывооопасного вещества и азотно-кислородной смеси с контролируемыми пропорциями газов помещалась в специальный лабораторный контейнер и подвергалась воздействию небольшой искры или открытого огня.

Следует еще раз подчеркнуть, что в таблице указаны максимально допустимые , по данным Агенства по контролю шахт США, концентрации кислорода. Как местное законодательство, так и внутренние правила безопасности многих имеющих отношение к работе с этими веществами предприятий и организаций могут иметь значительно более строгие требования к содержанию кислорода в газе, используемом для предотвращения воспламенения. И, конечно, разумным будет обеспечить более низкое содержание кислорода даже в случае, если законодательство и правила имеют в этом отношении пробел.

Вещество Примечания Макс. O 2
Ацетон Формула: (CH 3) 2 CO 11%
Бензол Формула: C 6 H 6 9%
Бутадиен Формула: C 4 H 6 , используется в пр-ве синтетических каучуков. 8%
Бутан Формула: C 4 H 10 , используется как бытовой топливный газ, в т.ч. в зажигалках, как хладагент, также как наполнитель аэрозольных баллончиков. 9,5%
Бутен Формула: C 4 H 8 9%
Сероуглерод Дисульфид углерода, формула: CS 2 . Инсектицид, фумигатор, растворитель. 4%
Угарный газ Монооксид углерода, формула: CO. Используется в производстве уксусной кислоты, альдегидов, метанола. Является одним из компонентов упаковочной смеси для свежего мяса (в основном, в США) для поддержания его «свежего вида». 4,5%
Циклопропан Формула: C 3 H 6 . Устаревший медицинский анастетик и средство для наркоза. 9%
Диметилбутан 9,5%
Этан Формула: C 2 H 6 , используется, главным образом, в производстве этилена. 9%
Эфиры Разные 8,5%
Диэтиловый эфир Формула: (C 2 H 5) 2 O. Топливо, лабораторный растворитель, устаревшее средство для наркоза. 8,5%
Этиловый спирт Этанол, формула: C 2 H 5 ОН. Используется как топливо, во многих химических процессах, в алкогольных напитках и др. 8%
Этилен Формула: C 2 H 4 . Во многих химических процессах, в т.ч. в производстве пластмасс, антифриза-этиленгликоля и в тысячах других. 9%
Бензин Состоит, в основном, из алифатических углеводородов. Имеется в виду бензин с октановым числом от 73 до 146. 9,5%
Гексан Формула: C 6 H 14 , используется в пр-ве клеев, в маслоэкстракционной пром-ти, как растворитель. Входит в состав бензина. 9,5%
Водород Формула: H 2 . Образует в смеси с кислородом 2:1 высокоопасный т.н. «гремучий газ». 4%
Сероводород Сульфид водорода, формула: H 2 S. Используется во многих химических реакциях. Имеет запах тухлых яиц. 6%
Изобутан Изомер бутана, формула: C 4 H 10 . Хладагент и пропеллант, известный также как R-600a. 9,5%
Изопентан Метилбутан, изомер пентана и диметилпропана (неопентана), формула: C 5 H 12 , используется в смеси с жидким азотом для поддержания температуры лабораторной охлаждающей ванны на уровне -160°C. 9,5%
Топливо JP-1 Устаревшее реактивное топливо - чистый авиационный керосин с высокой температурой вспышки и точкой замерзания -60°C. 8,5%
Топливо JP-3 Устаревшее реактивное топливо - смесь авиакеросина и лигроина. 9,5%
Топоиво JP-4 Устаревшее реактивное топливо - смесь авиационного керосина и бензина в пропорциях 50/50. 9%
Керосин Смесь углеводородов с 6...16 атомами углерода на молекулу. В наше время используется как авиационное топливо. 9%
Метан Формула: CH 4 . Основная составляющая природного газа, попутного нефтяного газа. Называют также болотным и рудничным газом. Топливо. 9,5%
Метиловый спирт Метанол, формула: CH 3 OH. Производство формальдегида, а также как растворитель, антифриз, топливо. 8%
Природный газ Смесь метана, этана и других углеводородов. Используется в производстве минеральных удобрений, как топливо, в том числе для электростанций, и др. 9,5%
Неопентан Диметилпропан, изомер пентана и изопентана, формула: C 5 H 12 . Используют как компонент топлива. 10%
n-гептан Формула: СН 3 (СН 2) 5 СН 3 . Имеет нулевое октановое число. Используется для определения октановых чисел топлив, а также как растворитель. 9%
Пентан Изомер неопентана (диметилпропана) и изопентана (метилбутана), формула: C 5 H 12 . В промышленности используется при пр-ве вспененного полистирола. 9%
Пропан Формула: C 3 H 8 , используется как топливо, а также, в смеси с изобутаном, в качестве хладагента, известного как R-290a. 9%
Пропилен Формула: С 3 H 6 , используется в производстве пластиков, а также ацетона, фенола и многих других веществ. 9%

В нашем теле кислород отвечает за процесс выработки энергии. В наших клетках только благодаря кислороду происходит оксигенация — превращение питательных веществ (жиров и липидов) в энергию клетки. При снижении парциального давления (содержания) кислорода во вдыхаемом уровне – снижается его уровень в крови — снижается активность организма на клеточном уровне. Известно, что более 20% кислорода потребляет головной мозг. Дефицит кислорода способствует Соответственно, при падении уровня кислорода страдают самочувствие, работоспособность, общий тонус, иммунитет.
Важно также знать, что именно кислород может выводить из организма токсины.
Обратите внимание, что во всех иностранных фильмах при аварии или человеку в тяжелом состоянии медики экстренных служб первым делом надевают пострадавшему кислородный аппарат, чтобы поднять сопротивляемость организма и повысить его шансы на выживание.
Лечебное воздействие кислорода известно и используется в медицине с конца XVIII века. В СССР активное использование кислорода в профилактических целях началось в 60х годах прошлого века.

Гипоксия

Гипоксия или кислородное голодание — пониженное содержание кислорода в организме или отдельных органах и тканях. Гипоксия возникает при недостатке кислорода во вдыхаемом воздухе и в крови, при нарушении биохимических процессов тканевого дыхания. Вследствие гипоксии в жизненно важных органах развиваются необратимые изменения. Наиболее чувствительными к кислородной недостаточности являются центральная нервная система, мышца сердца, ткани почек, печени.
Проявлениями гипоксии являются нарушение дыхания, одышка; нарушение функций органов и систем.

Вред кислорода

Иногда можно услышать, что «Кислород – окислитель, который ускоряет старение организма».
Здесь из верного посыла делается неверный вывод. Да, кислород – окислитель. Только благодаря ему питательные вещества из пищи перерабатываются в энергию организма.
Страх перед кислородом связан с двумя исключительными его свойствами: свободными радикалами и отравлением им при избыточном давлении.

1. Что такое свободные радикалы?
Некоторые из огромного количества постоянно протекающих окислительных (вырабатывающих энергию) и восстановительных реакций организма не завершаются до конца, и тогда образуются вещества с нестабильными молекулами, имеющими на внешних электронных уровнях неспаренные электроны, называемые «свободные радикалы». Они стремятся захватить недостающий электрон у любой другой молекулы. Эта молекула, превратившись в свободный радикал, похищает электрон у следующей, и так далее..
Зачем это нужно? Определенное количество свободных радикалов, или оксидантов, жизненно необходимо организму. Прежде всего — для борьбы с вредными микроорганизмами. Свободные радикалы используются иммунной системой в качестве «снарядов» против «интервентов». В норме в организме человека 5% образовавшихся в ходе химических реакций веществ становятся свободными радикалами.
Главными причинами нарушения естественного биохимического равновесия и роста количества свободных радикалов ученые называют эмоциональный стресс, тяжелые физические нагрузки, травмы и истощение на фоне загрязнения воздуха, употребления в пищу консервированных и технологически неправильно переработанных продуктов, овощей и фруктов, выращенных с помощью гербицидов и пестицидов, ультрафиолетового и радиационного облучения.

Таким образом, старение — это биологический процесс замедления деления клеток, а ошибочно связываемые со старением свободные радикалы — естественные и необходимые организму механизмы защиты и их вредоносное воздействие связано с нарушением естественных процессов в организме негативными факторами окружающей среды и стрессом.

2. «Кислородом легко отравиться».
Действительно, избыток кислорода опасен. Избыток кислорода вызывает увеличение количества окисленного гемоглобина в крови и снижение количества восстановленного гемоглобина. И, поскольку именно восстановленный гемоглобин выводит углекислый газ, его задержка в тканях приводит к гиперкапнии – отравлению CO2.
При переизбытке кислорода растет число свободнорадикальных метаболитов, тех самых страшных «свободных радикалов», которые обладают высокой активностью, действуя в качестве окислителей, способных повредить биологические мембраны клеток.

Ужасно, правда? Сразу хочется перестать дышать. К счастью, для того, чтобы отравиться кислородом, необходимо повышенное давление кислорода как, например, в барокамере (при оксигенобаротерапии) или при погружении со специальными дыхательными смесями. В обычной жизни такие ситуации не встречаются.

3. «В горах мало кислорода, зато много долгожителей! Т.е. кислород вреден».
Действительно, в Советском союзе в горных районах Кавказа и в Закавказье был зарегистрировано некоторое число долгожителей. Если же посмотреть на список верифицированных (т.е. подтвержденных) долгожителей мира за всю его историю, то картина не будет такой очевидной: старейшие долгожители, зарегистрированные во Франции, США и Японии в горах не жили..

В Японии, где до сих пор живет и здравствует самая старая женщина планеты Мисао Окава, которой уже более 116 лет, находится и «остров долгожителей» Окинава. Средняя продолжительность жизни здесь у мужчин - 88 лет, у женщин - 92; это выше, чем в остальной Японии, на 10-15 лет. На острове собраны данные о семистах с лишним местных долгожителей старше ста лет. Там говорят, что: «В отличие от кавказских горцев, хунзакутов Северного Пакистана и других народностей, похваляющихся своим долголетием, все окинавские акты рождения с 1879 года задокументированы в японском семейном реестре - косэки». Сами окинвацы считают, что секрет их долголетия покоится на четырех китах: диета, активный образ жизни, самодостаточность и духовность. Местные жители никогда не переедают, придерживаясь принципа «хари хачи бу» - наесться на восемь десятых. Эти «восемь десятых» у них состоят из свинины, водорослей и тофу, овощей, дайкона и местного горького огурца. Старейшие окинавцы не сидят без дела: они активно работают на земле, и их отдых тоже активен: больше всего они любят играть в местную разновидность крокета.: Окинаву называют самым счастливым островом – там нет свойственной крупным островам Японии спешки и стресса. Местные жители привержены философии юимару - «добросердечное и дружеское совместное усилие».
Интересно, что как только окинавцы переезжают в другие части страны, то среди таких людей уже не встречается долгожителей.. Таким образом, ученые, изучающие этот феномен выяснили, что в долгожительстве островитян генетический фактор роли не играет. А мы, со своей стороны, считаем крайне важным, что Окинавские острова находятся в активно продуваемой ветрами зоне в океане, и уровень содержания кислорода в таких зонах фиксируют как наиболее высокий – 21,9 – 22% кислорода.

Поэтому, задача системы OxyHaus не столько ПОВЫСИТЬ уровень кислорода в помещении, сколько ВОССТАНОВИТЬ природный его баланс.
В насыщенных естественным уровнем кислорода тканях организма ускоряется процесс обмена веществ, происходит «активация» организма, повышается его сопротивление негативным факторам, растет его выносливость и эффективность работы органов и систем.

Технология

В кислородных концентраторах Atmung применена разработанная NASA технология PSA (процесс абсорбции переменного давления). Внешний воздух проходит очистку через систему фильтров, после чего прибор при помощи молекулярного сита из вулканического минерала цеолита выделяет кислород. Чистый, почти 100% кислород подается потоком под давлением 5-10 литров в минуту. Этого давления дкостаточно, чтобы обеспечить природный уровень кислорода в помещении площадью до 30 метров.

Чистота воздуха

«Но ведь на улице грязный воздух, а кислород переносит с собой все вещества».
Именно поэтому в системах OxyHaus установлена трехступенчатая система фильтрации входящего воздуха. И уже очищенный воздух попадает на цеолитовое молекулярное сито, в котором отделяется кислород воздуха.

Опасность/безопасность

«Чем опасно применение системы OxyHaus? Ведь кислород взрывоопасен».
Применение концентратора безопасно. В промышленных кислородных баллонах существует опасность взрыва, поскольку в них кислород под высоким давлением. В кислородных концентраторах Atmung, на базе которых построена система, нет горючих материалов, в них использована технология PSA (процесс адсорбции переменного давления), разработанная NASA, она безопасна и проста в эксплуатации.

Эффективность

«Зачем мне ваша система? Я могу снизить уровень СО2 в помещении открыв окно и проветрив»
Действительно, регулярное проветривание очень полезная привычка и мы также его рекомендуем для снижения уровня СО2. Однако, городской воздух нельзя назвать по-настоящему свежим – в нем, кроме повышенного уровня вредных веществ, снижен уровень кислорода. В лесу содержание кислорода около 22%, а в городском воздухе – 20,5 – 20,8%. Эта кажущаяся незначительной разница ощутимо влияет на организм человека.
«Я попробовал подышать кислородом и ничего не почувствовал»
Воздействие кислорода не стоит сравнивать с воздействием энергетиков. Положительное воздействие кислорода имеет накопительный эффект, поэтому кислородный баланс организма необходимо пополнять регулярно. Мы рекомендуем включать систему OxyHaus на ночь и на 3-4 часа в день во время физических или интеллектуальных нагрузок. Использование системы 24 часа в сутки не обязательно.

«В чем разница с очистителями воздуха?»
Очиститель воздуха выполняет только функцию уменьшения количества пыли, но не решает проблему баланса уровня кислорода духоты.
«Какая концентрация кислорода в помещении является наиболее благоприятной?»
Наиболее благоприятно содержание кислорода близкое к такому же, как в лесу или на берегу моря: 22%. Даже если у вас, за счет естественной вентиляции, уровень кислорода будет чуть выше 21% — это благоприятная атмосфера.

«Можно ли отравиться кислородом?»

Кислородное отравление, гипероксия, — возникает вследствие дыхания кислородосодержащими газовыми смесями (воздуха, нитрокса) при повышенном давлении. Отравление кислородом может произойти при использовании кислородных аппаратов, регенеративных аппаратов, при использовании для дыхания искусственных газовых смесей, во время проведения кислородной рекомпрессии, а также вследствие превышения лечебных доз в процессе оксигенобаротерапии. При отравлении кислородом развиваются нарушения функций центральной нервной системы, органов дыхания и кровообращения.


Опасные факторы кислорода

Кислород не является горючим газом, но сильно поддерживает горение. Когда в воздухе имеется больше, чем 21% кислорода, сгораемые материалы воспламеняются легче и горят сильнее. Чем больше содержание кислорода в воздухе, тем ярче происходит это явление.

Воздух с повышенным содержанием кислорода (более 23%) и чистый кислород нетоксичны и не способны гореть и взрываться. Энергия, необходимая для поджигания материалов в среде кислорода, во много раз меньше энергии, требуемой для поджигания в среде воздуха в тех же условиях. По этому инициаторами возгорания негорючих материалов в среде кислорода могут быть безопасны в других условиях причины; курение, разряд электричества, нагрев механических частиц при трении.

Кислород газообразный является активным окислителем. Большинство веществ и материалов в контакте с кислородом становятся пожароопасными и взрывчатыми. Многие материалы которые не способны к горению на воздухе такие как листовая сталь, стальные трубы горят в среде кислорода, способность материалов к возгоранию возрастает при повышении давления и температуры кислорода.

Работа с кислородом сопряжена со следующими опасностями:

  • Возгорание оборудования, трубопроводной арматуры, работающих с воздухом с повышенным содержанием кислорода или чистым кислородом.
  • Возгорание одежды и волосяных покровов обслуживающего персонала, находящихся в среде кислорода газообразного или воздуха с повышенным содержанием кислорода.
  • Взрыв углеводородов и других взрывоопасных примесей при превышении их содержания в жидком кислороде или жидким обогащенным кислородом воздухе сверх допустимого.
  • Взрыв при пропитке жидким кислородом пористых органических материалов (асфальт, пенопласт,дерево) при этом образуется взрывчатое вещество - оксиликвиты, превосходящие по чувствительности и мощности обычно применяемые взрывчатые вещества.
  • Смазочные вещества и жировые загрязнения поверхностей, контактирующих с кислородом, являются причиной загорания или, при определенной толщине слоя, причиной детонационного взрыва.
  • Скорости горения материалов в кислороде в десятки раз выше, чем на воздухе Особую опасность представляет загорание одежды персонала, находящегося в атмосфере с повышенным содержанием кислорода. Скорость горения большинства тканей такова, что пострадавший не успевает сорвать с себя горящую одежду.
  • Конструкционные и уплотнительные неметаллические материалы (фибра, капрон, поликарбонат, резина на основе натуральных каучуков и др.) могут легко воспламеняться в кислороде высокого давления при появлении источника загорания (искра, ударная волна и т.п.). Загорание неметаллического материала может привести к поджиганию контактирующего с ним материала.

Из металлов интенсивно горят в кислороде титан, алюминий и его сплавы, углеродистые и нержавеющие стали. Медь и ее сплавы не горят в кислороде, но при воздействии источников большой энергии (при горении неметаллического материала) возможно оплавление медных и латунных деталей.

Кислород тяжелее воздуха. При утечках газообразного кислорода из-за неплотностей соединений оборудования и трубопроводов он может накапливаться в низких местах, траншеях и т.д.

Меры безопасности при обращении с кислородом

Запрещено курить и пользоваться открытым огнем в работы с кислородом. Лица не должны заходить в зоны с повышенной концентрацией кислорода в воздухе. После работы в помещении с повышенной концентрацией кислорода в воздухе необходимо хорошо проветрить одежду.

Инструмент и одежда должны быть свободными от масла и жира. Ни один узел, применяемый с кислородом, не должен соприкасаться с маслом или жиром.

При работе с жидким кислородом необходимо употреблять надлежащие перчатки, защитные очки, защитную обувь и защитные средства для тела.

Кислород применять только в узлах и местах, предназначенных для кислорода. Очень опасно использовать кислород взамен азота, инертного газа или воздуха в следующих или подобных случаях:

  • запуск двигателей внутреннего сгорания
  • работа пневмоинструмента
  • накачивание сосудов
  • окраска краскопультом
  • накачивание шин
  • промывка трубопроводов и емкостей для обслуживания
  • обогащение дыхательного воздуха при пониженной концентрации кислорода

Меры безопасности при обращении с баллонами, наполненными кислородом, должны быть направлены на исключение:

  • загорания;
  • разрушения баллонов;

Для предотвращения загораний при наполнении кислородных баллонов необходимо исключить:

  • применение деталей из материалов, не разрешенных для работы в среде кислорода при ремонте арматуры (уплотнители, прокладки, штоки и т.п.);
  • попадание жировых и масляных загрязнений на поверхности возможного контакта с кислородом;
  • применение не обезжиренных прокладок и деталей вентиля при его замене.

Для предотвращения разрушения баллона необходимо:

  • исключить возможность попадания на внутреннюю поверхность баллона жировых и масляных загрязнений;
  • не допускать наполнения кислородом баллонов, у которых истек срок назначенного освидетельствования;
  • не допускать падения баллонов и ударов по ним.

Запрещается:

  • наполнять кислородом баллоны из под других газов4
  • принимать под наполнение баллоны с остаточным давлением газа ниже 0,05мРа (0,.5кгс/см2);
  • наполнять кислородом баллоны без отличительной окраски и надписей;
  • ведение работ в помещениях при объемной доле кислорода в воздухе более 23%.

Меры безопасности при обращении с баллонами

Общее

1. К обращению с газовыми баллонами допускать только лиц, имеющих достаточный опыт и квалификацию.

2. Газовый баллон представляет собой сосуд под высоким давлением и с ним необходимо обращаться осторожно.

3. Никогда не снимать и не портить этикетки, прикрепленные изготовителем на баллонах.

4. До того как использовать баллон, убедиться в правильном его содержимом.

5. До того как использовать газ, ознакомиться с его свойствами и риском, связанным с его использованием.

6. В случае неуверенности в правильном обращении с каким-нибудь газом, связаться с изготовителем газа.

Обращение и применение

1. Всегда пользоваться защитными перчатками.

2. Не поднимать баллон за колпак и крышку.

3. Для перемещения баллонов всегда пользоваться тележкой или ящиками для баллонов.

4. При перемещении баллона защитный колпак должен всегда находиться на своем месте.

5. Для выявления утечек использовать мыльный раствор.

6. Всегда пользоваться регулятором давления, предназначенным для данного газа. Использовать вставки запрещено.

7. Перед подключением оборудования к баллону, проверить его правильный класс давления.

8. Предотвратить обратный поток газа в баллон (например, обратным клапаном), прежде чем подключать баллон.

9. Вентиль баллона открывать медленно.

10. Никогда не нагревать газовый баллон.

11. Подача газа из баллона в другой баллон запрещена.

12. Никогда не использовать баллон в качестве катка или рабочей подставки.

14. Не допускать падения баллонов.

15. Защитить баллоны от механических ударов.

16. Всегда, когда баллоном не пользуются, закрывать вентиль.

17. С пустыми баллонами всегда обращаться как с полными.

Поврежденные баллоны

В случае повреждения баллона в работе, он должен быть четко замаркирован и возвращен поставщику. Ни в коем случае не пытаться ремонтировать баллон или скрывать дефекты, так как это может вызвать риск опасности других.

Меры при пожаре

1. Вызвать пожарную охрану.

2. Обеспечить эвакуацию территории.

3. Если возможно, убрать баллоны из зоны пожара.

4. При отсутствии возможности вывоза баллонов, охлаждать баллоны водой из защищенного места.

5. Четко пометить баллоны, потерпевшие пожар, и сообщить поставщику.

Складирование

1. Баллоны должны храниться в отведенном для них хорошо вентилируемом месте.

2. Баллоны хранить в помещении с отсутствием риска пожара и расположенном далеко от источников тепла и возгорания.

3. Склад баллонов должен содержаться в порядке с разрешением доступа в него только уполномоченным лицам. Территория должна быть четко отмечена надлежащими щитами.

4. Курение и открытое пламя на складе и вблизи него запрещены.

5. Газовые баллоны должны храниться в вертикальном положении. Вентили баллонов должны быть хорошо закрыты с установленными на место колпаками.

6. Пустые баллоны хранить отдельно от полных.

На складе баллоны с разными видами газов хранить отдельно от других.

Поставщик даст дополнительную информацию по проблемам, связанным с хранением газов и обращением с ними.