Математическое моделирование физических процессов. Большая энциклопедия нефти и газа

Лекция 1.

МЕТОДОЛОГИЧЕСКИЕ ОСНОВЫ МОДЕЛИРОВАНИЯ

    Современное состояние проблемы моделирования систем

Понятия модели и моделирования

Моделирование можно рассматривать как замещение исследуемогообъекта (оригинала) его условным образом, описанием или другим объектом,именуемым моделью и обеспечивающим близкое к оригиналу поведениев рамках некоторых допущений и приемлемых погрешностей. Моделированиеобычно выполняется с целью познания свойств оригинала путем исследованияего модели, а не самого объекта. Разумеется, моделирование оправдано в томслучае когда оно проще создания самого оригинала или когда последний покаким-то причинам лучше вообще не создавать.

Под моделью понимается физический или абстрактный объект, свойствакоторого в определенном смысле сходны со свойствами исследуемого объекта.При этом требования к модели определяются решаемой задачей и имеющимисясредствами. Существует ряд общих требований к моделям:

2) полнота – предоставление получателю всей необходимой информации

об объекте;

3) гибкость – возможность воспроизведения различных ситуаций во всем

диапазоне изменения условий и параметров;

4) трудоемкость разработки должна быть приемлемой для имеющегося

времени и программных средств.

Моделирование – это процесс построения модели объекта и исследованияего свойств путем исследования модели.

Таким образом, моделирование предполагает 2 основных этапа:

1) разработка модели;

2) исследование модели и получение выводов.

При этом на каждом из этапов решаются разные задачи и используются

отличающиеся по сути методы и средства.

На практике применяют различные методы моделирования. В зависимостиот способа реализации, все модели можно разделить на два больших класса:физические и математические.

Математическое моделирование принято рассматривать как средствоисследования процессов или явлений с помощью их математических моделей.

Под физическим моделированием понимается исследование объектов иявлений на физических моделях, когда изучаемый процесс воспроизводятс сохранением его физической природы или используют другое физическоеявление, аналогичное изучаемому. При этом физические модели предполагают, как правило, реальное воплощение тех физических свойстворигинала, которые являются существенными в конкретной ситуации.Например, при проектировании нового самолета создается его макет,обладающий теми же аэродинамическими свойствами; при планированиизастройки архитекторы изготавливают макет, отражающий пространственноерасположение ее элементов. В связи с этим физическое моделированиеназывают также макетированием .

Полунатурное моделирование представляет собой исследованиеуправляемых систем на моделирующих комплексах с включением в составмодели реальной аппаратуры. Наряду с реальной аппаратурой в замкнутуюмодель входят имитаторы воздействий и помех, математические моделивнешней среды и процессов, для которых неизвестно достаточно точноематематическое описание. Включение реальной аппаратуры или реальныхсистем в контур моделирования сложных процессов позволяет уменьшитьаприорную неопределенность и исследовать процессы, для которых нет точногоматематического описания. С помощью полунатурного моделированияисследования выполняются с учетом малых постоянных времени инелинейностей, присущих реальной аппаратуре. При исследовании моделей свключением реальной аппаратуры используется понятие динамическогомоделирования , при исследовании сложных систем и явлений -эволюционного , имитационного и кибернетического моделирования .

Очевидно, действительная польза от моделирования может быть полученатолько при соблюдении двух условий:

1) модель обеспечивает корректное (адекватное) отображение свойств

оригинала, существенных с точки зрения исследуемой операции;

2) модель позволяет устранить перечисленные выше проблемы, присущие

проведению исследований на реальных объектах.

2. Основные понятия математического моделирования

Решение практических задач математическими методами последовательноосуществляется путем формулировки задачи (разработки математическоймодели), выбора метода исследования полученной математической модели,анализа полученного математического результата. Математическаяформулировка задачи обычно представляется в виде геометрических образов,функций, систем уравнений и т.п. Описание объекта (явления) может бытьпредставлено с помощью непрерывной или дискретной, детерминированнойили стохастической и другими математическими формами.

Теория математического моделирования обеспечивает выявлениезакономерностей протекания различных явлений окружающего мира илиработы систем и устройств путем их математического описания имоделирования без проведения натурных испытаний. При этом используютсяположения и законы математики, описывающие моделируемые явления,системы или устройства на некотором уровне их идеализации.

Математическая модель (ММ) представляет собой формализованноеописание системы (или операции) на некотором абстрактном языке, например,в виде совокупности математических соотношений или схемы алгоритма,т. е. такое математическое описание, которое обеспечивает имитацию работысистем или устройств на уровне, достаточно близком к их реальномуповедению, получаемому при натурных испытаниях систем или устройств.

Любая ММ описывает реальный объект, явление или процесс с некоторойстепенью приближения к действительности. Вид ММ зависит как от природыреального объекта, так и от задач исследования.

Математическое моделирование общественных, экономических,биологических и физических явлений, объектов, систем и различных устройствявляется одним из важнейших средств познания природы и проектированиясамых разнообразных систем и устройств. Известны примеры эффективногоиспользования моделирования в создании ядерных технологий, авиационных иаэрокосмических систем, в прогнозе атмосферных и океанических явлений,погоды и т.д.

Однако для таких серьезных сфер моделирования нередко нужнысуперкомпьютеры и годы работы крупных коллективов ученых по подготовкеданных для моделирования и его отладки. Тем не менее, и в этом случаематематическое моделирование сложных систем и устройств не толькоэкономит средства на проведение исследований и испытаний, но и можетустранить экологические катастрофы – например, позволяет отказаться отиспытаний ядерного и термоядерного оружия в пользу его математическогомоделирования или испытаний аэрокосмических систем перед их реальнымиполетами.Между тем математическое моделирование на уровне решения болеепростых задач, например, из области механики, электротехники, электроники,радиотехники и многих других областей науки и техники в настоящее времястало доступным выполнять на современных ПК. А при использованииобобщенных моделей становится возможным моделирование и достаточносложных систем, например, телекоммуникационных систем и сетей,радиолокационных или радионавигационных комплексов.

Целью математического моделирования является анализ реальныхпроцессов (в природе или технике) математическими методами. В своюочередь, это требует формализации ММ процесса, подлежащего исследованию.Модель может представлять собой математическое выражение, содержащеепеременные, поведение которых аналогично поведению реальной системы.Модель может включать элементы случайности, учитывающие вероятностивозможных действий двух или большего числа «игроков», как, например, втеории игр; либо она может представлять реальные переменные параметрывзаимосвязанных частей действующей системы.

Математическое моделирование для исследования характеристик системможно разделить на аналитическое, имитационное и комбинированное. В своюочередь, ММ делятся на имитационные и аналитические.

Аналитическое моделирование

Для аналитического моделирования характерно, что процессыфункционирования системы записываются в виде некоторых функциональныхсоотношений (алгебраических, дифференциальных, интегральных уравнений). Аналитическая модель может быть исследована следующими методами:

1) аналитическим, когда стремятся получить в общем виде явныезависимости для характеристик систем;

2) численным, когда не удается найти решение уравнений в общем виде иих решают для конкретных начальных данных;

3) качественным, когда при отсутствии решения находят некоторые егосвойства.

Аналитические модели удается получить только для сравнительно простыхсистем. Для сложных систем часто возникают большие математическиепроблемы. Для применения аналитического метода идут на существенноеупрощение первоначальной модели. Однако исследование на упрощенноймодели помогает получить лишь ориентировочные результаты. Аналитическиемодели математически верно отражают связь между входными и выходнымипеременными и параметрами. Но их структура не отражает внутреннююструктуру объекта.

При аналитическом моделировании его результаты представляются в видеаналитических выражений. Например, подключив RC -цепь к источникупостоянного напряжения E (R , C и E - компоненты данной модели), мыможем составить аналитическое выражение для временной зависимостинапряжения u (t ) на конденсаторе C :

Это линейное дифференциальное уравнение (ДУ) и являетсяаналитической моделью данной простой линейной цепи. Его аналитическоерешение, при начальном условии u (0) = 0 , означающем разряженныйконденсатор C в момент начала моделирования, позволяет найти искомуюзависимость – в виде формулы:

u (t ) = E (1− p (- t / RC )). (2)

Однако даже в этом простейшем примере требуются определенные усилиядля решения ДУ (1) или для применения систем компьютерной математики (СКМ) с символьными вычислениями – систем компьютернойалгебры. Для данного вполне тривиального случая решение задачимоделирования линейной RC -цепи дает аналитическое выражение (2)достаточно общего вида – оно пригодно для описания работы цепи при любыхноминалах компонентов R , C и E , и описывает экспоненциальный зарядконденсатора C через резистор R от источника постоянного напряжения E .

Безусловно, нахождение аналитических решений при аналитическоммоделировании оказывается исключительно ценным для выявления общихтеоретических закономерностей простых линейных цепей, систем и устройств.Однако его сложность резко возрастает по мере усложнения воздействий намодель и увеличения порядка и числа уравнений состояния, описывающихмоделируемый объект. Можно получить более или менее обозримыерезультаты при моделировании объектов второго или третьего порядка, но ужепри большем порядке аналитические выражения становятся чрезмерногромоздкими, сложными и трудно осмысляемыми. Например, даже простойэлектронный усилитель зачастую содержит десятки компонентов. Тем неменее, многие современные СКМ, например, системы символьной математикиMaple, Mathematica или среда MATLAB , способны в значительноймере автоматизировать решение сложных задач аналитическогомоделирования.

Одной из разновидностей моделирования является численное моделирование, которое заключается в получении необходимыхколичественных данных о поведении систем или устройств каким-либоподходящим численным методом, таким как методы Эйлера илиРунге-Кутта. На практике моделирование нелинейных систем и устройствс использованием численных методов оказывается намного болееэффективным, чем аналитическое моделирование отдельных частных линейныхцепей, систем или устройств. Например, для решения ДУ (1) или систем ДУв более сложных случаях решение в аналитическом виде не получается, но поданным численного моделирования можно получить достаточно полныеданные о поведении моделируемых систем и устройств, а также построитьграфики описывающих это поведение зависимостей.

Имитационное моделирование

Приимитационном 10имоделировании реализующий модель алгоритмвоспроизводит процесс функционирования системы во времени. Имитируютсяэлементарные явления, составляющие процесс, с сохранением их логическойструктуры и последовательности протекания во времени.

Основным преимуществом имитационных моделей по сравнениюсаналитическими является возможность решения более сложных задач.

Имитационные модели позволяют легко учитывать наличие дискретных илинепрерывных элементов, нелинейные характеристики, случайные воздействияи др. Поэтому этот метод широко применяется на этапе проектированиясложных систем. Основным средством реализации имитационногомоделирования служит ЭВМ, позволяющая осуществлять цифровоемоделирование систем и сигналов.

В связи с этим определим словосочетание «компьютерноемоделирование », которое все чаще используется в литературе. Будем полагать,что компьютерное моделирование - это математическое моделированиес использованием средств вычислительной техники. Соответственно,технология компьютерного моделирования предполагает выполнениеследующих действий:

1) определение цели моделирования;

2) разработка концептуальной модели;

3) формализация модели;

4) программная реализация модели;

5) планирование модельных экспериментов;

6) реализация плана эксперимента;

7) анализ и интерпретация результатов моделирования.

При имитационном моделировании используемая ММ воспроизводиталгоритм («логику») функционирования исследуемой системы во времени приразличных сочетаниях значений параметров системы и внешней среды.

Примером простейшей аналитической модели может служить уравнениепрямолинейного равномерного движения. При исследовании такого процессас помощью имитационной модели должно быть реализовано наблюдениеза изменением пройденного пути с течением времени.Очевидно, в одних случаях более предпочтительным являетсяаналитическое моделирование, в других - имитационное (или сочетание того идругого). Чтобы выбор был удачным, необходимо ответить на два вопроса.

С какой целью проводится моделирование?

К какому классу может быть отнесено моделируемое явление?

Ответы на оба эти вопроса могут быть получены в ходе выполнения двухпервых этапов моделирования.

Имитационные модели не только по свойствам, но и по структуресоответствуют моделируемому объекту. При этом имеется однозначное и явноесоответствие между процессами, получаемыми на модели, и процессами,протекающими на объекте. Недостатком имитационного моделированияявляется большое время решения задачи для получения хорошей точности.

Результаты имитационного моделирования работы стохастическойсистемы являются реализациями случайных величин или процессов. Поэтомудля нахождения характеристик системы требуется многократное повторение ипоследующая обработка данных. Чаще всего в этом случае применяетсяразновидность имитационного моделирования - статистическое

моделирование (или метод Монте-Карло), т.е. воспроизведение в моделяхслучайных факторов, событий, величин, процессов, полей.

По результатам статистического моделирования определяют оценкивероятностных критериев качества, общих и частных, характеризующихфункционирование и эффективность управляемой системы. Статистическоемоделирование широко применяется для решения научных и прикладных задачв различных областях науки и техники. Методы статистическогомоделирования широко применяются при исследовании сложныхдинамических систем, оценке их функционирования и эффективности.

Заключительный этап статистического моделирования основан наматематической обработке полученных результатов. Здесь используют методыматематической статистики (параметрическое и непараметрическое оценивание,проверку гипотез). Примером параметрической оценки являетсявыборочное среднее показателя эффективности. Среди непараметрическихметодов большое распространение получил метод гистограмм .

Рассмотренная схема основана на многократных статистическихиспытаниях системы и методах статистики независимых случайных величин.Эта схема является далеко не всегда естественной на практике и оптимальнойпо затратам. Сокращение времени испытания систем может быть достигнуто засчет использования более точных методов оценивания. Как известно изматематической статистики, наибольшую точность при заданном объемевыборки имеют эффективные оценки. Оптимальная фильтрация и методмаксимального правдоподобия дают общий метод получения таких оценок.В задачах статистического моделирования обработка реализацийслучайных процессов необходима не только для анализа выходных процессов.

Весьма важен также и контроль характеристик входных случайныхвоздействий. Контроль заключается в проверке соответствия распределенийгенерируемых процессов заданным распределениям. Эта задача частоформулируется как задача проверки гипотез .

Общей тенденцией моделирования с использованием ЭВМ у сложныхуправляемых систем является стремление к уменьшению временимоделирования, а также проведение исследований в реальном масштабевремени. Вычислительные алгоритмы удобно представлять в рекуррентнойформе, допускающей их реализацию в темпе поступления текущей информации.

ПРИНЦИПЫ СИСТЕМНОГО ПОДХОДА В МОДЕЛИРОВАНИИ

    Основные положения теории систем

Основные положения теории систем возникли в ходе исследованиядинамических систем и их функциональных элементов. Под системой понимают группу взаимосвязанных элементов, действующих совместнос целью выполнения заранее поставленной задачи. Анализ систем позволяетопределить наиболее реальные способы выполнения поставленной задачи,обеспечивающие максимальное удовлетворение поставленных требований.

Элементы, составляющие основу теории систем, не создаются с помощьюгипотез, а обнаруживаются экспериментальным путем. Для того чтобы начатьпостроение системы, необходимо иметь общие характеристикитехнологических процессов. Это же справедливо и в отношении принциповсоздания математически сформулированных критериев, которым долженудовлетворять процесс или его теоретическое описание. Моделированиеявляется одним из наиболее важных методов научного исследования иэкспериментирования.

При построении моделей объектов используется системный подход,представляющий собой методологию решения сложных задач, в основекоторой лежит рассмотрение объекта как системы, функционирующейв некоторой среде. Системный подход предполагает раскрытие целостностиобъекта, выявление и изучение его внутренней структуры, а также связейс внешней средой. При этом объект представляется как часть реального мира,которая выделяется и исследуется в связи с решаемой задачей построениямодели. Кроме этого, системный подход предполагает последовательныйпереход от общего к частному, когда в основе рассмотрения лежит цельпроектирования, а объект рассматривается во взаимосвязи с окружающейсредой.

Сложный объект может быть разделен на подсистемы, представляющие собой части объекта, удовлетворяющие следующим требованиям:

1) подсистема является функционально независимой частью объекта. Онасвязана с другими подсистемами, обменивается с ними информацией иэнергией;

2) для каждой подсистемы могут быть определены функции или свойства,не совпадающие со свойствами всей системы;

3) каждая из подсистем может быть подвергнута дальнейшему делению доуровня элементов.

В данном случае под элементом понимается подсистема нижнего уровня,дальнейшее деление которой нецелесообразно с позиций решаемой задачи.

Таким образом, систему можно определить как представление объектав виде набора подсистем, элементов и связей с целью его создания,исследования или усовершенствования. При этом укрупненное представлениесистемы, включающее в себя основные подсистемы и связи между ними,называется макроструктурой, а детальное раскрытие внутреннего строениясистемы до уровня элементов – микроструктурой.

Наряду с системой обычно существует надсистема – система болеевысокого уровня, в состав которой входит рассматриваемый объект, причёмфункция любой системы может быть определена только через надсистему.

Следует выделить понятие среды как совокупности объектов внешнего мира,существенно влияющих на эффективность функционирования системы, но невходящих в состав системы и ее надсистемы.

В связи с системным подходом к построению моделей используетсяпонятие инфраструктуры, описывающей взаимосвязи системы с ееокружением (средой).При этом выделение, описание и исследование свойств объекта,существенных в рамках конкретной задачи называется стратификациейобъекта, а всякая модель объекта является его стратифицированнымописанием.

Для системного подхода важным является определение структуры системы, т.е. совокупности связей между элементами системы, отражающих ихвзаимодействие. Для этого вначале рассмотрим структурный ифункциональный подходы к моделированию.

При структурном подходе выявляются состав выделенных элементов системы и связи между ними. Совокупность элементов и связей позволяет судить о структуре системы. Наиболее общим описанием структуры является топологическое описание. Оно позволяет определить составные части системыи их связи с помощью графов. Менее общим является функциональное описание, когда рассматриваютсяо тдельные функции, т. е. алгоритмы поведения системы. При этом реализуетсяфункциональный подход, определяющий функции, которые выполняетсистема.

На базе системного подхода может быть предложена последовательностьразработки моделей, когда выделяют две основные стадии проектирования:макропроектирование и микропроектирование.

На стадии макропроектирования строится модель внешней среды,выявляются ресурсы и ограничения, выбирается модель системы и критериидля оценки адекватности.

Стадия микропроектирования в значительной степени зависит отконкретного типа выбранной модели. В общем случае предполагает созданиеинформационного, математического, технического и программногообеспечения системы моделирования. На этой стадии устанавливаютсяосновные технические характеристики созданной модели, оцениваются времяработы с ней и затраты ресурсов для получения заданного качества модели.

Независимо от типа модели при ее построении необходиморуководствоваться рядом принципов системного подхода:

1) последовательное продвижение по этапам создания модели;

2) согласование информационных, ресурсных, надежностных и другиххарактеристик;

3) правильное соотношение различных уровней построения модели;

4) целостность отдельных стадий проектирования модели.

  • E) поощрять научные исследования, относящиеся к обеспечению сохранности фольклора.
  • SWOT - анализ и его применение в маркетинговых исследованиях.
  • Активное и реактивное сопротивление элементов сети (физический смысл, математическое определение), полное сопротивление сети.
  • Анализ возможных экологических и связанных с ними социальных, экономических и других последствий реализации альтернатив решений по объекту
  • Под объектом моделирования понимают любой предмет, процесс или явление, которые изучают методом моделирования. При изучении объекта учитываются только те свойства, которые необходимы для достижения цели. Выбор свойств объекта при построении модели является важной задачей на первых этапах моделирования.

    Модель объекта – это:
    1) такая мысленно представимая или материально реализованная система, которая, отображая или воспроизводя объект исследования, способна заменить его так, что её изучение даёт новую информацию об объекте.
    2) объект - заместитель, который учитывает реальные свойства объекта, необходимые для достижения цели.

    Основная функция модели – не только описание объекта, но и получение информации о нём.

    Различают физическое и математическое моделирование.

    Физи́ческое модели́рование - метод экспериментального изучения различных физических явлений, основанный на их физическом подобии . Метод применяется при следующих условиях:

    • Исчерпывающе точного математического описания явления на данном уровне развития науки не существует, или такое описание слишком громоздко и требует для расчётов большого объёма исходных данных, получение которых затруднительно.
    • Воспроизведение исследуемого физического явления в целях эксперимента в реальных масштабах невозможно, нежелательно или слишком дорогостояще (например, цунами).

    В широком смысле, любой лабораторный физический эксперимент является моделированием, поскольку в эксперименте наблюдается конкретный случай явления в частных условиях, а требуется получить общие закономерности для всего класса подобных явлений в широком диапазоне условий. Искусство экспериментатора заключается в достижении физического подобия между явлением, наблюдаемым в лабораторных условиях и всем классом изучаемых явлений.

    Математическое моделирование , в широком смысле, включает ис­следования не только с помощью чисто математических моделей. Здесь используются также информационные, логические, имитационные и дру­гие модели и их комбинации. В этом случае математическая модель пред­ставляет собой алгоритм, включающий определение зависимости между характеристиками, параметрами и критериями расчета, условия протека­ния процесса функционирования системы и т.д. Данная структура может стать моделью явления, если она с достаточной степенью отражает его фи­зическую сущность, правильно описывает соотношение свойств и под­тверждается результатами проверки. Применением математических моде­лей и вычислительной техники реализуется один из наиболее эффективных методов научных исследований - вычислительный эксперимент, позво­ляющий изучать поведение сложных систем, которые трудно физически смоделировать. Часто это связано с большой сложностью и стоимостью объектов, а в некоторых случаях невозможностью воспроизвести экспери­мент в реальных условиях.



    Эффективность применения информационных систем в сфере образования. Задачи, решаемые ИС в сфере образования. Специфика информационных потребностей преподавательского и управленческого персонала сферы образования. Основные показатели качества информационного обеспечения сферы образования и обоснование требований к их количественным значениям

    В современном обществе применение информационных технологий во всех сферах жизнедеятельности стало обязательным сопровождающим компонентом. Особенно важная роль её применению отводится в области познания, изучения, т.е. в сфере образования. ИТ-технологии занимают одно из ведущих мест в интеллектуализации человека и общества в целом, повышении культурного и образовательного уровня каждого гражданина.



    В последнее время в сфере образования информационные технологии, основанные на новейших компьютерных и аудиовизуальных достижениях науки и техники, находят все большее применение. Одним из эффективных направлений реализации образовательных услуг является использование различных форм обучения на основе информационных и обучающих технологий.

    Помимо этого, стремление активно применять современные информационные технологии в сфере образования необходимо ориентировать на повышение уровня и качества подготовки специалистов. С каждым годом растет количество организаций и предприятий обращающихся на рынок образовательных услуг. В связи с этим в самых благоприятных условиях оказываются те учебные заведения, которые включают в себя довузовское, вузовское и послевузовское образование с использованием новых образовательных технологий.

    В настоящее время все более возрастает роль информационно-социальных технологий в образовании, которые обеспечивают всеобщую компьютеризацию учащихся и преподавателей на уровне, позволяющем решать, как минимум, три основные задачи:

    – обеспечение выхода в сеть Интернет каждого участника учебного процесса, причем, желательно, в любое время и из различных мест пребывания;

    – развитие единого информационного пространства образовательных индустрий и присутствие в нем в различное время и независимо друг от друга всех участников образовательного и творческого процесса;

    – создание, развитие и эффективное использование управляемых информационных образовательных ресурсов, в том числе личных пользовательских баз и банков данных и знаний учащихся и педагогов с возможностью повсеместного доступа для работы с ними.

    Основными преимуществами современных информационных технологий являются: наглядность, возможность использования комбинированных форм представления информации - данные, стереозвучание, графическое изображение, анимация, обработка и хранение больших объемов информации, доступ к мировым информационным ресурсам, которые должны стать основой поддержки процесса образования.

    Необходимость усиления роли самостоятельной работы обучаемого требует внесения существенные изменений в структуру и организацию учебного процесса, повышению эффективности и качества обучения, активизации мотивации познавательной деятельности в ходе изучения теоретического и практического учебного материала по той или иной дисциплине.

    В процессе информатизации образования необходимо иметь в виду, что главный принцип использования компьютера - это ориентация на те случаи, когда человек не может выполнить поставленную педагогическую задачу. Например, преподаватель не может наглядно продемонстрировать большинство физических процессов без компьютерного моделирования.

    С другой стороны, компьютер должен помогать развитию творческих способностей учащихся, способствовать обучению новым профессиональным навыкам и умениям, развитию логического мышления. Процесс обучения должен быть направлен не на умение работать с определенными программными средствами, а на совершенствование технологии работы с различной информацией: аудио- и видео-, графической, текстовой, табличной.

    Современные мультимедиа технологии и инструментальные средства позволяют реализовать всю гамму компьютерных обучающих программ. Однако их использование требует от преподавателей достаточно высокой квалификации пользователя.

    Так как понятие «моделирование» является достаточно общим и универсальным, к числу способов моделирования относятся столь различные подходы как, например, метод мембранной аналогии (физическое моделирование) и методы линейного программирования (оптимизационное математическое моделирование). Для того чтобы упорядочить употребление термина «моделирование» вводят классификацию различных способов моделирования. В наиболее общей форме выделяются две группы различных подходов к моделированию, определяемых понятиями «физическое моделирование» и «идеальное моделирование».

    Физическое моделирование осуществляется путем воспроизведения исследуемого процесса на модели, имеющей в общем случае отличную от оригинала природу, но одинаковое математическое описание процесса функционирования.

    Совокупность подходов к исследованию сложных систем, определяемая термином «математическое моделирование », является одной из разновидностей идеального моделирования. Математическое моделирование основано на использовании для исследования системы совокупности математических соотношений (формул, уравнений, операторов и т.д.), определяющих структуру исследуемой системы и ее поведение.

    Математическая модель - это совокупность математических объектов (чисел, символов, множеств и т.д.), отражающих важнейшие для исследователя свойства технического объекта, процесса или системы.

    Математическое моделирование - это процесс создания математической модели и оперирования ею с целью получения новой информации об объекте исследования.

    Построение математической модели реальной системы, процесса или явления предполагает решение двух классов задач, связанных с построением «внешнего» и «внутреннего» описания системы. Этап, связанный с построением внешнего описания системы называется макроподходом. Этап, связанный с построением внутреннего описания системы называется микроподходом.

    Макроподход - способ, посредством которого производится внешнее описание системы. На этапе построения внешнего описания делается упор на совместное поведение всех элементов системы, точно указывается, как система откликается на каждое из возможных внешних (входных) воздействий . Система рассматривается как «черный ящик», внутреннее строение которого неизвестно. В процессе построения внешнего описания исследователь имеет возможность, воздействуя различным образом на вход системы, анализировать ее реакцию на соответствующие входные воздействия. При этом степень разнообразия входных воздействий принципиальным образом связана с разнообразием состояний выходов системы. Если на каждую новую комбинацию входных воздействий система реагирует непредсказуемым образом, испытание необходимо продолжать. Если на основании полученной информации может быть построена система, в точности повторяющая поведение исследуемой, задачу макроподхода можно считать решенной.



    Итак, метод «черного ящика» состоит в том, чтобы выявить, насколько это возможно, структуру системы и принципы ее функционирования, наблюдая только входы и выходы. Подобный способ описания системы некоторым образом аналогичен табличному заданию функции.

    При микроподходе структура системы предполагается известной, то есть предполагается известным внутренний механизм преобразования входных сигналов в выходные. Исследование сводится к рассмотрению отдельных элементов системы. Выбор этих элементов неоднозначен и определяется задачами исследования и характером исследуемой системы. При использовании микроподхода изучается структура каждого из выделенных элементов, их функции, совокупность и диапазон возможных изменений параметров.

    Микроподход - способ, посредством которого производится внутреннее описание системы, то есть описание системы в функциональной форме.

    Результатом этого этапа исследования должен явиться вывод зависимостей, определяющих связь между множествами входных параметров, параметров состояния и выходных параметров системы. Переход от внешнего описания системы к ее внутреннему описанию называют задачей реализации.

    Задача реализации заключается в переходе от внешнего описания системы к ее внутреннему описанию. Задача реализации представляет собой одну из важнейших задач в исследовании систем и, по существу, отражает абстрактную формулировку научного подхода к построению математической модели. В такой постановке задача моделирования заключается в построении множества состояний и вход-выходного отображения исследуемой системы на основе экспериментальных данных. В настоящее время задача реализации решена в общем виде для систем, у которых отображение вход-выход линейно. Для нелинейных систем общего решения задачи реализации пока не найдено.

    Моделирование

    Моделирование и его виды

    Моделирование является одним из основных методов современных научных исследований.

    Моделирование – это исследование объектов познания на их моделях, построение и изучение моделей реально существующих предметов, явлений и конструируемых объектов. Это воспроизведение изучаемых свойств объекта или явления с помощью модели при ее функционировании в определенных условиях. Модель – это образ, структура или материальное тело, которые воспроизводят с той или иной мерой сходства явление или объект. Модель изоморфна (сходственна, аналогична) с натурой (оригиналом), обобщением которой она является. Она воспроизводит наиболее характерные признаки изучаемого объекта, выбор которых определяется целью исследования. Модель всегда приближенно отображает объект или явление. В противном случае модель превращается в объект и теряет свое самостоятельное значение.

    Для получения решения модель должна быть достаточно простой и в то же время она должна отражать существо задачи, чтобы найденные с ее помощью результаты имели смысл.

    В процессе познания человек всегда, более или менее явно и сознательно, строит модели ситуаций окружающего мира и управляет своим поведением в соответствии с выводами, полученными им при изучении модели. Модель всегда отвечает конкретной цели и ограничена рамками поставленной задачи. Модель системы управления для специалиста по автоматике коренным образом отличается от модели этой же системы для специалиста по надежности. Моделирование в конкретных науках связывают с выяснением (или воспроизведением) свойств какого-либо объекта, процесса или явления с помощью другого объекта, процесса или явления, причем обычно предполагается соблюдение определенных количественных соотношений между моделью и оригиналом. Различают три вида моделирования.

    1. Математическое (абстрактное) моделирование основывается на возможности описания изучаемого процесса или явления на языке некоторой научной теории (чаще всего на математическом).

    2. Аналоговое моделирование основывается на изоморфизме (сходственности) явлений, имеющих различную физическую природу, но описываемых одинаковыми математическими уравнениями. Примером может служить изучение гидродинамического процесса с помощью исследования электрического поля. Оба эти явления описываются дифференциальным уравнением Лапласа в частных производных, решение которого обычными методами возможно только для частных случаев. В то же время экспериментальные исследования электрического поля намного проще соответствующих исследований в гидродинамике.

    3. Физическое моделирование состоит в замене изучения некоторого объекта или явления экспериментальным исследованием его модели, имеющей ту же физическую природу. В науке любой эксперимент, проводимый в целях выявления тех или иных закономерностей изучаемого явления или для проверки правильности и границ применимости теоретических результатов, фактически представляет собой моделирование, так как объект исследования – конкретная модель (образец), обладающая определенными физическими свойствами. В технике физическое моделирование используют тогда, когда трудно провести натурный эксперимент. В основу физического моделирования положены теории подобия и анализ размерностей. Необходимым условием реализации этого вида моделирования является геометрическое подобие (подобие формы) и физическое подобие модели и оригинала: в сходственные моменты времени и в сходственных точках пространства значения переменных величин, характеризующих явления, для оригинала должны быть пропорциональны тем же значениям для модели. Это позволяет производить соответствующий пересчет полученных данных.

    Математическое моделирование и вычислительный эксперимент.

    В настоящее время наибольшее распространение получили математические модели, реализуемые на ЭВМ. При построении данных моделей можно выделить следующие этапы:

    1. Создание или выбор модели, соответствующей поставленной задаче.

    2. Создание условий функционирования модели.

    3. Эксперимент на модели.

    4. Обработка результатов.

    Рассмотрим более подробно перечисленные выше этапы.

    На математическое описание исследуемого объекта (процесса) на первом этапе накладывается ряд требований: разрешимость используемых уравнений, соответствие математического описания изучаемому процессу с допустимой точностью, адекватность принятых допущений, практическая целесообразность использования модели. Степень удовлетворения этих требований определяет характер математического описания и является наиболее сложной и трудоемкой частью при создании модели.

    Рис. 2.1. Схема процесса построения математической модели

    Реальные физические явления, как правило, очень сложны, и их никогда нельзя проанализировать точно и в полном объеме. Построение модели всегда связано с компромиссом, т.е. с принятием допущений при которых справедливы уравнения модели (рис. 2.1). Таким образом, чтобы с помощью модели можно было получить имеющие смысл результаты, она должна быть достаточно детальной. В то же время она должна быть достаточно простой, чтобы можно было получить решение при ограничениях налагаемых на результат такими факторами как сроки, быстродействие ЭВМ, квалификация исполнителей и т. д.

    Математическая модель, отвечающая требованиям первого этапа моделирования, обязательно содержит в себе систему уравнений основного определяющего процесса или процессов. Только такая модель пригодна для моделирования. Это свойство лежит в основе отличия моделирования от расчета и определяет возможность использования модели для моделирования. Расчет, как правило, базируется на основе зависимостей, полученных ранее, при исследованиях процесса, и поэтому отображает определенные свойства объекта (процесса). Следовательно, методику расчета можно назвать моделью. Но функционирование такой модели воспроизводит не изучаемый процесс, а изученный. Очевидно, понятия моделирования и расчета четко не разграничиваются, потому что и при математическом моделировании на ЭВМ алгоритм модели сводится к расчету. Но в этом случае расчет носит вспомогательный характер, так как результаты расчета позволяют получить изменение количественных характеристик модели. Самостоятельного значения, какое имеет моделирование, в данном случае расчет иметь не может.

    Рассмотрим второй этап моделирования. Модель в ходе эксперимента так же как и объект, функционирует в определенных условиях, которые задаются программой эксперимента. Условия моделирования не входят в понятие модели, поэтому с одной и той же моделью можно проводить различные эксперименты при задании различных условий моделирования. Математическому описанию условий функционирования модели, несмотря на кажущуюся однозначность толкования, необходимо уделять серьезное внимание. При описании математической модели некоторые несущественные процессы следует заменять экспериментальными данными и зависимостями или трактовать их упрощенно. Если эти данные не будут полностью соответствовать предполагаемым условиям функционирования модели, то результаты моделирования могут быть неверными.

    После получения математического описания модели и условий функционирования составляют алгоритмы расчетов, блок-схемы программ для ЭВМ, а затем и программы.

    В процессе отладки программ их составные части и отдельные программы в целом подвергаются всесторонней проверке для выявления ошибки или недостаточности математического описания. Проверку производят путем сопоставления полученных данных с известными фактическими данными. Окончательной проверкой является контрольный эксперимент, который осуществляют при одинаковых условиях с проведенным ранее экспериментом непосредственно на объекте. Совпадение с достаточной точностью результатов эксперимента на модели и эксперимента на объекте служит подтверждением соответствия модели и объекта (адекватности модели реальному объекту) и достоверности результатов последующих исследований.

    Отлаженная и отвечающая принятым положениям программа моделирования на ЭВМ имеет все необходимые элементы для проведения самостоятельного эксперимента на модели (третий этап), который называют также вычислительным экспериментом .

    Четвертый этап математического моделирования – обработка результатов принципиально не отличается от обработки результатов обычного эксперимента.

    Более подробно рассмотрим широко распространенное в настоящее время понятие вычислительного эксперимента. Вычислительным экспериментом называется методология и технология исследований, основанные на применении прикладной математики и ЭВМ как технической базы при использовании математических моделей. В таблице приведена сравнительная характеристика натурного и вычислительного экспериментов. (Натурный эксперимент поводится в естественных условиях и на реальных объектах).

    Сравнительная характеристика натурного и вычислительного экспериментов

    Таблица 2.1

    Натурный эксперимент Вычислительный эксперимент
    Основные этапы 1. Анализ и выбор схемы эксперимента, уточнение элементов установки, ее конструкции. 1. На основе анализа объекта (процесса) выбирается или создается математическая модель.
    2. Разработка конструкторской документации, изготовление экспериментальной установки и ее отладка. 2. Для выбранной математической модели составляется алгоритм расчета, создается программа для машинного счета.
    3. Пробный замер параметров на установке в соответствии с программой эксперимента. 3. Пробный машинный счет в соответствии с программой вычислительного эксперимента.
    4. Детальный анализ результатов эксперимента, уточнение конструкции установки, ее доводка, оценка степени достоверности и точности проведенных измерений. 4. Детальный анализ результатов расчетов для уточнения и корректировки алгоритма и программ счета, доводка программы.
    5. Проведение чистовых экспериментов в соответствии с программой. 5. Окончательный машинный счет в соответствии с программой.
    6. Обработка и анализ экспериментальных данных. 6. Анализ результатов машинного счета.
    Преимущества Как правило, более достоверные данные об изучаемом объекте (процессе) Широкие возможности, большая информативность и доступность. Позволяет получить значения всех интересующих параметров. Возможность качественно и количественно проследить функционирование объекта (эволюцию процессов). Сравнительная простота уточнения и расширения математической модели.

    На основе математического моделирования и методов вычислительной математики создались теория и практика вычислительного эксперимента. Рассмотрим подробнее этапы технологического цикла вычислительного эксперимента.

    1. Для исследуемого объекта строится модель, формулируются допущения и условия применимости модели, границы, в которых будут справедливы полученные результаты; модель записывается в математических терминах, как правило, в виде дифференциальных или интегродифференциальных уравнений; создание математической модели проводится специалистами, хорошо знающими данную область естествознания или техники, а также математиками, представляющими себе возможности решения математической задачи.

    2. Разрабатывается метод расчета сформулированной математической задачи. Эта задача представляется в виде совокупности алгебраических формул, по которым должны вестись вычисления и условия, показывающие
    последовательность применения этих формул; набор этих формул н условий носит название вычислительного алгоритма. Вычислительный эксперимент имеет многовариантный характер, так как решения поставленных задач часто зависят от многочисленных входных параметров. Тем не менее каждый конкретный расчет в вычислительном эксперименте проводится при фиксированных значениях всех параметров. Между тем в результате такого эксперимента часто ставится задача определения оптимального набора параметров. Поэтому при создании оптимальной установки приходится проводить большое число расчетов однотипных вариантов задачи, отличающихся значением некоторых параметров. При организации вычислительного эксперимента обычно используются эффективные численные методы.

    3. Разрабатываются алгоритм и программа решения задачи на ЭВМ. Программирование решений определяется теперь не только искусством и опытом исполнителя, а перерастает в самостоятельную науку со своими принципиальными подходами.

    4. Проведение расчетов на ЭВМ. Результат получается в виде некоторой цифровой информации, которую далее необходимо будет расшифровать. Точность информации определяется при вычислительном эксперименте достоверностью модели, положенной в основу эксперимента, правильностью алгоритмов и программ (проводятся предварительные «тестовые» испытания).

    5. Обработка результатов расчетов, их анализ и выводы. На этом этапе могут возникнуть необходимость уточнения математической модели (усложнения или, наоборот, упрощения), предложения по созданию упрощенных инженерных способов решения и формул, дающих возможности получить необходимую информацию более простым способом.

    Возможности вычислительного эксперимента шире, чем эксперимента с физической моделью, так как получаемая информация более подробная. Математическая модель может быть сравнительно просто уточнена или расширена. Для этого достаточно изменить описание некоторых ее элементов. Кроме того, несложно выполнить математическое моделирование при различных условиях моделирования, что позволяет получить оптимальное сочетание конструкционных параметров, показателей работы объекта (характеристик процесса). Для оптимизации указанных параметров целесообразно использовать методику планирования эксперимента, подразумевая под последним вычислительный эксперимент.

    Вычислительный эксперимент приобретает исключительное значение в тех случаях, когда натурные эксперименты и построение физической модели оказываются невозможными. Особенно ярко можно проиллюстрировать значение вычислительного эксперимента при исследовании масштабов современного воздействия человека на природу. То, что принято называть климатом – устойчивое среднее распределение температуры, осадков, облачности и т. д., – представляет собой результат сложного взаимодействия грандиозных физических процессов, протекающих в атмосфере, на поверхности земли и в океане. Характер и интенсивность этих процессов в настоящее время изменяются значительно быстрее, чем в сравнительно, близком геологическом прошлом в связи с воздействием загрязнения воздуха индустриальными выбросами углекислого газа, пыли н т. д. Климатическую систему можно исследовать, строя соответствующую математическую модель, которая должна описывать эволюцию климатической системы, учитывающей взаимодействующие между собой атмосферы океана и суши. Масштабы климатической системы настолько грандиозны, что эксперимент даже в одном каком-то регионе чрезвычайно дорог, не говоря уже о том, что вывести такую систему из равновесия было бы опасно. Таким образом, глобальный климатический эксперимент возможен, но не натурный, а вычислительный, проводящий исследования не реальной климатической системы, а ее математической модели.

    В науке и технике известно немало областей, в которых вычислительный эксперимент оказывается единственно возможным при исследовании сложных систем.


    Похожая информация.


    При расчете физических процессов составляется математическая модель - система уравнений, описывающая зависимости между физическими величинами при некоторых упрощающих допущениях. Например, при движении точки вблизи поверхности Земли полагается ускорение свободного падения постоянным, не зависящим от высоты расположения точки над поверхностью. Для тел, движущихся с небольшой скоростью или в разряженной атмосфере, пренебрегают сопротивлением воздуха. Само точка часто заменяют материальной точкой, т. е. размерами точки пренебрегают. Физические процессы описываются, как правило системой дифференциальных уравнений, для решения которой применяют различные численные методы (модели). Широко используется метод конечных разностей, в котором бесконечно малые приращения переменных заменяют малыми (конечными) приращениями.

    Например, изменение параметра времени представляют в виде:dt=t 2 -t 1 , а изменение функции "Х": dX(t) = X(t)-X(t-dt) = X(t 2)-X(t 1) = X 2 -X 1 .

    Рассмотрим задачу определения траектории точки, движущегося в некоторой плоскости под действием различных сил. Например, необходимо вычислить траекторию движения снаряда с учетом сопротивления воздуха или ракеты с учетом изменения ее массы, движущихся в поле тяготения Земли.

    Координаты точки X(t), Y(t) в некоторый момент времени "t" можно определить, зная координаты точки X(t-dt), Y(t-dt) в предыдущий момент времени "t-dt" и изменение (приращение) координат dX, dY:

    X(t) = X(t-dt) + dX(t),

    Y(t) = Y(t-dt) + dY(t).

    Если временной интервал выбрать достаточно малым, то можно полагать, что скорость точки на этом интервале не изменяется и приращения координат определяются по формулам:

    dX(t) = Vx(t)dt,

    dY(t) = Vy(t)dt.

    Здесь Vx(t), Vy(t) - проекции скорости на оси координат.

    Составляющие скорости Vx(t) и Vy(t) можно вычислить по формулам:

    Vx(t) = Vx(t-dt) + Ax(t)*dt,

    Vy(t) = Vy(t-dt) + Ay(t)*dt.

    Здесь Ax(t), Ay(t) - проекции ускорения на оси координат.

    Ускорение определяется силами, действующими на точка: ускорение равно равнодействующей силе, деленной на массу точки. Силы могут зависеть от координат точки, времени и скорости точки. Например, ускорение ракеты в поле тяготения планеты обратно пропорционально квадрату расстояния до центра планеты. При включении двигателя ракеты ускорение зависит от времени (программы работы двигателя). При движении в плотных слоях атмосферы на ракету действуют силы сопротивления воздуха, зависящие от скорости движения, т. е. ускорение зависит от скорости.



    Приведем алгоритм расчета траектории движения точки:

    1. Определяем силы, действующие на точка, и находим проекции ускорения на оси координат. В общем случае ускорение точки зависит от многих факторов и в момент времени t задается как функция от времени, скорости и координат точки:

    Ax:= Fx(Vx, Vy, X, Y, t); Ay:= Fy(Vx, Vy, X, Y, t);

    Где Vx, Vy, Ax, Ay - проекции скорости и ускорения.

    2.Задаем начальное положение точки - координаты X, Y и начальную скорость и ускорение в виде проекций на оси координат:

    X:= X0; Y:= Y0; Vx:= V*cos(fi); Vy:= V*sin(fi);

    Ax:= Fx(Vx, Vy, X, Y, t);

    Ay:= Fy(Vx, Vy, X, Y, t);

    Где V - начальная скорость точки, fi - угол наклона вектора скорости к оси Х.

    3. Задаем временной шаг dt и разбиваем весь временной интервал на N участков. При равномерной разбивке приращение времени определяется по формуле:

    dt:= (t[N]-t)/(N-1); Здесь (t[N] - t) - время движения точки.

    Выбор величины dt определяется необходимой точностью расчета, возможностями вычислительной техники, и может уточняться при решении задачи.

    4.Вычисляем массивы скорости, ускорения и координат точки:

    For i:= 2 to N do begin

    Vx[i]:= Vx + Ax*dt;

    Vy[i]:= Vy + Ay*dt;

    X[i]:= X + 0.5*(Vx + Vx[i])*dt;

    Y[i]:= Y + 0.5*(Vy + Vy[i])*dt;

    Ax[i]:= Fx(Vx[i], Vy[i], X[i], Y[i], t[i]);

    Ay[i]:= Fy(Vx[i], Vy[i], X[i], Y[i], t[i]);

    { уточняем скорость точки в расчетной точке }

    VX[i]:= VX + 0.5*(Ax + Ax[i])*dt;

    VY[i]:= VY + 0.5*(Ay + Ay[i])*dt;

    Для уменьшения погрешностей расчетной схемы, скорость и ускорения на участке интерполируются средними значениями.

    5. Строим траекторию движения точки . Здесь удобно использовать процедуры из библиотеки построения графиков GR_F. Следует определить расчетную область и область рисования траектории на экране. Траектория на экране рисуется процедурой: PutPixel_G(X[i], Y[i], N);

    Для тестирования работы алгоритма рассмотрим задачу расчета траектории точки, движущегося из точки с координатами X, Y с начальной скоростью Vx, Vy под действием сил, вызывающих ускорение точки Ax, Ay. Следуя пунктам 1. . 5 приведенного выше алгоритма необходимо рассчитать траекторию движения точки и сравнить с траекторией точки, описанной аналитической зависимостью X(t), Y(t).

    Практическое задание N 2. 22


    N X 1 Y 1 Vx 1 Vy 1 Axi Ayi X(t) Y(t)


    1 0 0 0 b 2*a -y a*t 2 b*sin(t)

    2 0 0 a b 0 -y a*t b*sin(t)

    3 1 0 1 1 -2*y 2*x e t * cos(t) e t *sin(t)

    4 a 0 0 0 -x x*b/a a* cos(t) b*(1-cos(t))

    5 a b 0 0 -4*x y a* cos(2*t) b*cos(t)

    6 0 0 0 b 2*a 0 a*t 2 b*t

    7 2*a 0 0 a x 0 a*(e t + e -t) a*t

    8 0 b a 0 -x -y a* sin(t) b*cos(t)

    Y V F, * V 0 g fi 0 X

    Рассмотрим задачу расчета траектории снаряда, движущегося с начальной скоростью "V 0 " под углом "fi" к горизонту с учетом сил сопротивления воздуха, пропорциональных скорости снаряда. Проекции ускорений определим в виде функций:

    FUNCTION Fx(Vx, kc: real): real; begin Fx:= - kc*Vx end;

    FUNCTION Fy(Vy, kc: real): real; begin Fy:= - kc*Vy - g end;

    Где kc - коэффициент сопротивления воздуха,

    g = 9. 81, м/с - ускорение свободного падения у поверхности Земли.

    Поскольку время подлета снаряда к цели неизвестно, то параметр "dt" выбирается приближенно, например, исходя из максимального времени полета снаряда над горизонтальной поверхностью без учета сопротивления воздуха: tмах= 2*V*sin(fi)/g. Для N = 500, dt = t/500. При решении конкретных задач процесс расчета прекращается при достижении снарядом цели, либо при ограничениях по статическим координатам, например:

    REPEAT i:=i+1;

    {операторы расчета массивов скорости, ускорения и координат точки }

    Until (cc = GetPixel_G(X[i], Y[i])) or (Y[i] < 0) or (i = N);

    Здесь cc - цвет пикселов цели, Y[i] < 0 - ограничение по горизонтальной поверхности, i = N - ограничение по размеру массива. В случае преждевременного завершения полета снаряда необходимо увеличить dt или параметр N.

    Практическое задание N 2. 23

    1. Рассчитать разностным моделированием и по аналитической зависимости траектории полета снаряда без учета сопротивления воздуха. Построить траектории полета снаряда. Начальная скорость V 0 =1000, м/с, угол fi=450. Аналитическая зависимость имеет вид:

    X = V 0 *t*cos(fi); Y = V 0 *t*sin(fi) - g*t 2 /2;

    2. Рассчитать разностным моделированием и по аналитической зависимости траектории полета снаряда с учетом сопротивления воздуха, пропорциональным скорости снаряда. Построить траектории полета снаряда. Начальная скорость V 0 =3000, м/с, угол fi = 45 0 . Коэффициент сопротивления воздуха kc = 0. 01,с -1 .

    Аналитическая зависимость имеет вид:

    X=V 0 *cos(fi)*(1-e (-kc*t))/kc; Y=(V 0 *sin(fi)+g/kc)*(1-e (-kc*t))/kc-g*t/kc;

    3. Рассчитать разностным моделированием траектории полета снаряда с учетом сопротивления воздуха, пропорциональным квадрату скорости снаряда. Коэффициент сопротивления воздуха kc 1 = kc 2 . Построить совместно траектории полета снаряда для п. 1, 2, 3. Начальная скорость V 0 = 3000, м/с, угол fi = 45 0 .

    4. Составить программу поражения неподвижной цели при kc 1 = kc 2 . Изменяя в цикле угол fi на небольшую величину, определить в программе угол при котором будет поражена цель - небольшой прямоугольник с координатами вершин (x1, y1) и (x2, y2). Построить все траектории полета снаряда.

    Примечание к п. 1. . 4: Выводить на экран исходные данные: V 0 , fi, kc, а также наибольшую высоту и дальность полета снаряда.

    Рассмотрим задачу расчета траектории космического тела , в поле тяготения планеты без учета сил сопротивления. В начальный момент времени тело движется на высоте "Н" со скоростью "V 0 ", направленной по касательной к окружности радиуса R 0 . Поскольку движение спутника вокруг планеты достаточно продолжительно, то не целесообразно запоминать в оперативной памяти все параметры (координаты, скорости и ускорения) в каждый момент времени. Обычно эти параметры, записываются в файл на диск при вычислениях через некоторые моменты времени, а траекторию строят сразу, либо запуская отдельную программу, считывающую данные из файла. Расчетная область задается исходя из оценочных расчетов. Для спутника, движущегося вокруг Земли, можно принять:

    Xmin= Ymin= -Kv*R 0 , Xmax= Ymax= Kv*R 0 ,

    Здесь R 0 = (Rz+H), Rz=6. 37*10 6 , м. - радиус Земли.

    Kv=1. 5 при V 0 <= W 1 ; Kv=10 при W 1 < V 0 < W 2 ; Kv=20 при V >= V 2 .

    W 1 = Rz*Ö(g/R 0) - первая космическая скорость,

    W 2 = Ö2* W 1 - вторая космическая скорость.

    Параметр "dt" можно определить приближенно по формуле: dt=T/N,

    где T= 6. 28*Rz/W 1 - время оборота спутника вокруг Земли, N=300.

    Расстояние от спутника до центра планеты определяется через координаты:

    function R(x, y: double): double; begin R:= sqrt(x*x + y*y) end;

    Проекции ускорений определим в виде функции:

    function FA(x,r,kz: double):double; begin FA:= -kz*x/(r*r*r) end;

    Здесь kz = 4. E+14 для Земли (в системе СИ).

    Пусть в начальный момент времени известны координаты спутника:

    x 1 = R 0 ; y 1 = 0; r 1 = R(x 1 , y 1);

    скорость: Vx 1 = 0; Vy 1 = V 0 ;

    и ускорение: Ax 1 = FA(X 1 , r 1 , kz); Ay 1 = FA(Y 1 , r 1 , kz);

    Отметим, что скорость в начальный момент времени направлена по касательной к окружности радиуса r 1 .

    Для записи алгоритма расчета траектории необходимо знание параметров в двух соседних точках, например, в точке "1" - для предшествующего момента времени и в точке "2" - для расчетного момента времени. Расчет производим в цикле с одновременным выводом траектории движения спутника на экран до тех пор пока выполняется ограничение по радиусу траектории или не нажата любая клавиша.

    While (r1< Xmax) or (r1> Rz) or (not keyPressed) do begin

    Vx2:= Vx1 + Ax1*dt; Vy2:= Vy1 + Ay1*dt;

    X2:= X1 + 0.5*(Vx1 + Vx2)*dt;

    Y2:= Y1 + 0.5*(Vy1 + Vy2)*dt; r2:= R(x2, y2);

    Ax2:=FA(X2, r2, kz);

    Ay2:=FA(Y2, r2, kz);

    Vx2:= Vx1 + 0.5*(Ax1 + Ax2)*dt; { уточняем скорость }

    Vy2:= Vy1 + 0.5*(Ay1 + Ay2)*dt;

    { Переопределяем значения параметров в точке }

    x1:= x2; y1:= y2; r1:= r2;

    Vx1:= Vx2; Vy1:= Vy2; Ax1:= Ax2; Ay1:= Ay2

    PutPixel_G(x1,y1,c); { Строим траекторию движения точки, c - цвет точки }

    Практическое задание N 2. 24

    r = P/(1 + e*cos(fi));

    где e = P/R 0 - 1; P = (V 0 * R 0 /Rz) 2 /g ; 0 <= fi = 2*Pi.

    В начальный момент времени известны координаты спутника: x 1 = R 0 ; y 1 = 0;

    и скорость: Vx 1 = 0; Vy 1 = V 0 ; Рассмотреть случаи:

    1_1. Начальная скорость V 0 <= W 1 , высота H = 300000, м.

    1_2. Начальная скорость W 1 <= V 0 < W 2 , высота H = 400000, м.

    1_2. Начальная скорость V 0 >= W 2 , высота H = 500000, м.

    Примечание: Построить траектории полета спутника. Через равные промежутки времени выводить на экран время полета спутника, скорость и высоту.


    1) V 0 Rz Rz 2) Rz V 0 Rz


    1) 20 *Rz 2) 20 *Rz


    Рассмотрим задачу расчета траектории точки переменной массы , движущегося под действием реактивной тяги. Движение точки в этом случае описывается уравнением Мещерского:

    A = (U/M)*(dM/dt) + F/M

    Где A - ускорение точки, M - масса точки.

    U - скорость реактивной струи относительно точки,

    F - результирующая внешних сил, действующих на точку,

    Учитывая, что F = kz*M/r 2 - сила притяжения направлена к центру Земли, а P = U*(dM/dt) - реактивная сила двигателя (тяга) направлена по касательной к траектории движения, определяем проекции ускорения на оси координат:

    Ax = P*Vx/(M*V) - kz*x/(r 3); Ay = P*Vy/(M*V) - kz*y/(r 3);

    Где V = Ö(Vx 2 + Vy 2) - скорость точки,

    r = Ö(x 2 + y 2) - расстояние до центра Земли,

    Vx , Vy - проекции скорости точки на оси координат, x, y - координаты точки.

    Полагая расход топливаz = dM/dt постоянным, массу точки можно определить по формуле: M = M 0 - z*t; при t < Tk ,

    где M 0 - начальная масса точки, Tk - время работы двигателя.

    Практическое задание N 2. 25

    1. Построить десять траекторий полета баллистической ракеты, рассчитанных разностным моделированием. Начальная скорость V 0 =1,м/с, тяга двигателя P=2. 5Е6,н, стартовая масса M 0 = 1. 5Е5, кг, расход топлива z= 700, кг/с, время работы двигателя Tk = 200, с.

    2. Построить траектории полета двухступенчатой баллистической ракеты, рассчитанные разностным моделированием. Начальная скорость V 0 = 1,м/с, стартовая масса M 0 = 3Е5, кг, для первой ступени: тяга P 1 =5Е6, н, расход топлива z 1 = 1700, кг/с, время работы двигателя Tk 1 = 130, с. Для второй ступени: тяга P 2 = 1. 1Е6, н, расход топлива z 2 = 300, кг/с, время работы двигателя Tk 2 = 230, с.

    Примечание к п. 1, 2: сопротивление воздуха и вращение Земли не учитывать. Угол запуска ракеты к горизонту = 90 0 -N*0. 002 0 , где N= 1, 2, 3, ..., 10. Во время работы двигателя dt=0. 05, c, затем dt=0. 5, c.

    3. Построить траекторию полета спутника Земли при включении двигателя, рассчитанную разностным моделированием. Начальные условия на высоте H=400000 м принять следующие: скорость V 0 =W 1 и направлена по касательной к окружности, M 0 =11000, кг, тяга двигателя P=4Е5, н, расход топлива z=100, кг/с, время работы двигателя Tk = 70, с. Рассчитать скорость спутника при работе двигателя по формуле Циолковского: V = V 0 + U*ln(M 0 /M) , где U = P/z .

    Через каждые 10 секунд выводить на экран время полета спутника и скорость.

    Рассмотрим задачу расчета траектории точки, прикрепленной к упругой нити , и движущейся с начальной скоростью "V 1 " под углом "fi" к оси "x" из точки с координатами (x 1 , y 1), без учета сил сопротивления воздуха. Эта задача моделирует известную игрушку - мяч, привязанный на резинке.

    Пусть точка имеет массу "M", длина нити "L". Полагаем, что нить невесома и абсолютно упруга. Коэффициент упругости "Kn".

    Оси координат проведем через точку закрепления нити вверх и влево. Расчетную область ограничим: X_min = Y_min = -Lm, X_max = Y_max = Lm,

    где Lm = abs(V 1 * Ö(M/Kn)) + Ö(x12 + y12) + L + 2*M*g/Kn.

    Y V 1 x,y 0 X

    Период свободных колебаний груза,

    подвешенного на упругой нити:

    T = 6, 28* Ö(M/Kn). Примем dt = T/300.

    Проекции ускорения определяются как дискретная функция расстояния " r " от начала координат до точки закрепления нити: если r <= L, то ускорение от сил упругости равно нулю, в остальных случаях:

    Ax = -x*Ky*dr/(r*M);

    Ay = -y*Ky*dr/(r*M) - 9.81; где dr = (r-L) > 0.

    Проекцию ускорения на ось “Х” от сил упругости, запишем в виде функции:

    FUNCTION FA(x, r, L, Kn, M: double): double;

    begin if (r-L)>0 then FA:= -x*Kn*(r-L)/(r*M) else FA:= 0 end;

    Аналогичная функция составляется для проекции ускорения на ось “У”. Методика расчета соответствует приведенной для движения спутника в поле тяготения планеты.

    Практическое задание N 2. 26

    1. Построить траекторию движения мяча, подвешенного на упругой нити в вязкой среде, рассчитанную разностным моделированием. Сопротивление среды пропорционально скорости движения мяча: kc=0. 01, с -1 . Нить закреплена в центре квадрата со стороной 2*Lm, длина нити L=1, м, коэффициент упругости Kn=5, н/м. Масса мяча M=0. 2, кг. Мяч начинает движение из точки с координатами x 1 =-0. 5*L, y 1 =0, со скоростью V 1 =10, м/с, под углом 45 0 .

    2. Построить траекторию движения мяча, подвешенного на упругой нити в квадратной коробке, рассчитанную разностным моделированием, с учетом уменьшения нормальной составляющей скорости на 20% при отражении мяча от стенки. Сопротивление среды пропорционально скорости движения мяча: kc=0. 05, с -1 . Нить длиной L=1, м, закреплена в центре квадрата со стороной a=1. 5*L. Коэффициент упругости Kn=5, н/м, масса мяча M=0. 1, кг. Мяч начинает движение из точки с координатами x 1 =-L, y 1 =0, со скоростью V 1 x=1, м/с, V 1 y=5, м/с.

    2. 4. Моделирование многовариантных задач с использованием графов




    Рассмотрим "классический" пример многовариантной задачи. Пусть пункты A и B связаны между собой дорогами, могущими проходить также через пункты 1, 2, 3,..., N. В общем случае каждый пункт связан дорогами со всеми остальными. В частном случае некоторые связи (дороги) отсутствуют. Схематически эти пункты и связи можно изобразить в виде графа.

    Графом называется совокупность узлов (пункты A, B, 1, 2, . . . , N) и связывающих их ребер (дорог). Маршрутом движения называется последовательность связанных ребрами узлов. В дальнейшем будем рассматривать те маршруты движения, которые всегда начинаются из пункта A и заканчиваются в пункте B. Причем пункты A и B на маршруте повторяться не могут. Например: А-1-4-В .

    Ставится задача составить маршруты при заданных ограничениях (фильтрах), либо найти оптимальный по некоторым параметрам маршрут и т. д. Например, известна стоимость проезда по каждой из дорог. Необходимо найти маршрут с наименьшей стоимостью проезда, либо найти все маршруты со стоимостью не превышающей определенную величину и т. д.

    Пусть узел A имеет номер "0", а узел B - номер "N+1". Рассмотрим общий случай: каждый пункт связан со всеми остальными. Обозначим M - число промежуточных узлов на маршруте.

    При М = 0 маршрут может проходить только из узла "0" в узел "N+ 1".

    При М = 1 маршрут проходит через один из узлов: j1= 1, либо j1= 2, .., либо j1= N.

    При М = 2 маршрут проходит через два узла, причем первый из них может иметь номер: j1=1, либо j1=2, ... либо j1=N, а второй - номер: j2=1, либо j2=2, ... либо j2=N, т. е. возможно N 2 маршрутов. Графически все маршруты можно представить в виде:

    A M=1 A M=2


    1 . . . j1 . . . N


    1 2 3 ... j1 ... N 1 2 3 ... j2 . N 1 2 3 ... j2 ... N 1 2 3 ... j2 .. N


    Таким образом, число маршрутов равно N M и время перебора маршрутов при больших значениях N и M очень быстро растет.

    При постановке задачи нахождения маршрутов указывается значение M - наименьшее число узлов на маршруте, M1 - наибольшее число узлов на маршруте. Причем 1<=M<=M1. Например, пусть на графе имеется три узла N=3 и необходимо составить маршруты, проходящие через два узла, т. е. M=2, M1=2. Тогда в общем случае имеются маршруты:

    0-1-1-4; 0-2-1-4; 0-3-1-4; односторонняя связь

    0-1-2-4; 0-2-2-4; 0-3-2-4; 1 2 3

    0-1-3-4; 0-2-3-4; 0-3-3-4; двусторонняя связь

    Постановка задачи нахождения маршрутов включает определение матрицы коэффициентов aij, характеризующих связи между узлами i и j. Связь узла A задается коэффициентами a 0 j, узла В - коэффициентами ai N+ 1 . Матрица имеет вид:

    a 11 a 12 a 13 ... a 1N Если aij = aji = 0, то связь

    a 21 a 22 a 23 ... a 2N между узлами i и j отсутствует.

    a 31 a 32 a 33 ... a 3N Если aij=0 и aji<>0, то связь

    ........................... . между узлами i и j односторонняя.

    a N1 a N2 a N3 ... a NN Если aij<>0 и aji<>0, то связь

    между узлами i и j двусторонняя.

    Если aij = aji при i =1, 2, . . , N; j = 1, 2, . . , N, то матрица симметричная.

    Если aij = 0 при j =1, 2, . . , N; i > j, то матрица треугольная.

    Значение aij может содержать значение ребра, связывающего узлы i и j (например, стоимость проезда), либо значение, содержащееся в узле i или j, либо любое значение, указывающее на существование связи между узлами i и j.

    Введем линейный массив "Y", коэффициенты которого обозначают номера узлов графа через которые проходит маршрут, а индексы показывают номер пункта по порядку следования на маршруте. Операторы по перебору маршрутов имеют вид:

    Y:=0; {номер узла "А" графа}

    repeat {цикл по числу узлов на маршруте}

    for j:= 1 to M do Y[j]:=1; {начальные номера узлов на маршруте}

    Y:=N+1; {номер узла "B" графа}

    repeat {цикл по перебору номеров узлов на маршруте}

    for j:=1 to M+1 do if a,y[j]]=0 then goto METKA; {проверка}

    {****** здесь ставятся операторы фильтра ************}

    {****** . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . ************}

    for j:=0 to M+1 do write("-", Y[j]); writeln; {вывод маршрута}

    METKA: Y:=Y+1; {изменение номера узла первого пункта на маршруте}

    for j:=1 to M-1 do {определяем номера узлов на маршруте}

    if Y[j]>N then begin Y[j]:=1; Y:=Y+1 end else Break;

    until Y[M]=N+1;

    until M>M1;

    В начале программы задается возможный маршрут 0-1-1-1-. . . -1-N+1 для заданного значения M>0. Проверяется наличие связей и ставятся фильтры для определения маршрута. Затем увеличивается номер узла первого пункта по порядку следования на маршруте: 0-2-1-1-. . . -1-N+1 и т. д. до 0-N-1-1-. . . -1-N+1. При превышении номера узла значения N, номер узла сбрасывается до единицы, а номер следующего узла увеличивается на единицу: 0-1-2-1-. . . -1-N+1 и снова увеличивается номер узла первого пункта до значения N: 0-N-2-1-. . . -1-N+1 и далее сбрасывается до единицы с увеличением номера следующего узла: 0-1-3-1-. . . -1-N+1. После (N-1)-го сброса и увеличения значения узла первого пункта до N получим маршрут: 0-N-N-1-. . . -1-N+1 и далее: 0-1-1-2-. . . -1-N+1. Таким образом, происходит перебор всех возможных маршрутов до 0-N-N-N-. . . -N-N+1. После этого рассматриваются маршруты для M=M+1 включая M=M1. Отметим, что при необходимости маршрут 0-N+1 для M=0 нужно рассмотреть отдельно.

    При решении конкретных задач необходимо определить значение коэффициентов aij матрицы связи и установить необходимые фильтры.

    Рассмотрим задачуопределения стоимости маршрутов из A в B .

    1.) Зададим стоимость проезда из узла i в узел j:

    for i:=0 to N+1 do for j:=i to N+1 do a:=Random(X); {X-дано}

    for i:=0 to N+1 do a:=0; { движение внутри узла запрещено}

    for i:=0 to N+1 do for j:=i to N+1 do a:=a; {связи }

    {двусторонние и равнозначные}

    2). Матрицу связей можно вывести на экран для проверки. При выводе маршрута на экран или в файл можно выводить также значение стоимости маршрута.

    S:=0; for m:=1 to M1+1 do S:=S+a,y[m]]; {стоимость маршрута}

    1 2 3 4 5 6 7 8 9

    Рассмотрим задачу расстановки мин на прямоугольном поле размером Nx*Ny. При этом M=M1=N=Nx*Ny и все узлы должны быть пройдены без повторений. Расстановка начинается из узла с заданным номером NH и может закончиться в узлах на верхней границе.

    1) Определим матрицу связей:

    for i:=0 to N+1 do for j:=1 to N+1 do a:=0;

    for i:=1 to N-1 do begin a:=1; a:=1 end; {связи по гориз}

    for j:=1 to Ny-1 do begin k:=Nx*j; a:=0; a:=0 end;

    for i:=1 to Nx do for j:=1 to Ny-1 do {связи по вертикали}

    begin k:=Nx*(j-1)+i; a:=1; a:=1 end;

    a:=2; { NH - узел связи c узлом 0}

    for i:=1 to Nx do a:=3; { 1, . . , Nx - узлы связи c узлом N+1}

    2). Установим фильтр, запрещающий возврат в узел на маршруте:

    for k:=1 to M do c]:=0; for k:=1 to M do

    begin c]:=c]+1; if c]=1 then goto METKA end;

    Здесь производится суммирование повторяющихся номеров узлов на маршруте. При совпадении номера узла значение счетчика c]=1 -маршрут не рассматривается.

    Рассмотрим задачу загрузки N - видов коробок в машину. Задается число коробок каждого вида: Ki, их вес Mi и объем Vi, где i=1, 2, . . , N. Ограничения могут быть по общему весу и объему. Число узлов графа равно N. Число узлов на маршруте M=1, М1=K 1 +K 2 +. . . +K N . Интервал М-М1 можно уменьшить просчитав наибольшее допустимое по весу и объему число коробок KMi каждого вида загружаемых в машину (KMi<=Ki). Тогда М = min(KMi), а М1 = max(KMi). Поскольку порядок загрузки не имеет значения, то все связи односторонние. 0

    1 2 ... k ... N N+1

    1) Определим матрицу связей:

    for i:=0 to N+1 do for j:=i to N+1 do a:=0; {нижний треугольник}

    for i:=0 to N+1 do for j:=i to N+1 do a:=1; {верхний треугольник}

    2) Определение числа коробок каждого вида аналогично суммированию повторяющихся номеров узлов на маршруте.

    Практическое задание N 2. 27

    1) Вывести в файл стоимость маршрутов без повторяющихся узлов при N=4, M=3, M1=4, Х=9. Определить номера маршрутов с наименьшей и наибольшей стоимостью

    для разных значений М.

    2) Вывести символами псевдографики в текстовом режиме маршруты движения в прямоугольнике 2х4, либо 4х2. Начало движения при NH=8.

    3) Вывести общий вес и число коробок каждого из 3-х видов, загружаемых в машину. Задать веса функцией Random(50)+50; Установить фильтр по общему весу G<900. Общее число коробок: M=10, M1=12.